首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300 ℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   

2.
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.  相似文献   

3.
In this work, a portable slit imaging system is developed to study both the electron beam diameter and the profile of the newly developed Shanghai Electron Beam Ion Trap (Shanghai EBIT). Images are detected by a charge coupled device (CCD) sensitive to both X rays and longer wavelength photons (up to visible). Large scale ray tracings were conducted for correcting the image broadening effects caused by the finite slit width and the finite width of the CCD pixels. A numerical de-convolution method was developed to analyse and reconstruct the electron beam density distribution in the EBIT. As an example of the measured beam diameter and current density, the FWHM (full width at half maximum) diameter of the electron beam at 81 keV and 120 mA is found to be 76.2 μm and the density 2.00 × 10^3 A.cm-2, under a magnetic field of 3 T, including all corrections.  相似文献   

4.
This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron-cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.  相似文献   

5.
IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.  相似文献   

6.
The beam tail effect of multi-bunches will influence the electron beam performance in a high intensity thermionic RF gun. Beam dynamic calculations that illustrate the working states of single beam tail and multi-pulse feed-in of a performance-enhanced EC-ITC (external cathode independent tunable cavity) RF gun for an FEL (free electron laser) injector are performed to estimate the extracted bunch properties. By using both Parmela and homemade MATLAB codes, the effects of a single beam tail as well as interactions of multi-pulses are analyzed, where a ring-based electron algorithm is adopted to calculated RF fields and the space-charge field. Furthermore, the procedure of unexpected deviated-energy particles mixed with an effective bunch head is described by the MATLAB code as well. As a result, the performance-enhanced EC-ITC RF gun is proved to have the capability to extract continual stable bunches suitable for a high requirement THz-FEL.  相似文献   

7.
To monitor the beam profile at the end of the linac non-destructively, a wire scanner as a new diagnostic instrument was designed, manufactured and installed in 2007. Since then, several measurements have been carried out using this device. This paper describes the whole system of the wire scanner and the testing results.  相似文献   

8.
Beam transport network (BTN) with small world (SW) (so-called BTN-SW) and Lorenz chaotic connected network with scale-free (SF) are taken as two typical examples, we proposed a global linear coupling and combined with local error feedback methods in sub-networks to realize multi-goal control method of halo and chaos in two networks above. The simulation results show that the methods above is effective for any chaotic connected networks and has a potential of applications in based-halo-chaos secure communication.  相似文献   

9.
Lanthanum silicates LaloSi6 xMgxO27_x (x = 0-0.4) were prepared by solid state synthesis to investigate the effect of Mg doping on crystal structure and ionic conductivity. Rietveld analysis of the powder XRD patterns reveals that Mg substitution on Si site results in significant enlargement of channel triangles, favoring oxide-ion conduction. Furthermore, an increase of Mg concentration significantly influences the linear density of interstitial oxygen, which plays an important role in ionic conductivity. The Arrhenius plots of LaloSi6_xMgxO27 x (x = 0-0.4) suggest that Mg-doped samples present higher conductivity and lower activation energy than non-doped La10Si6027, and LaloSis.8Mgo.2026.8 exhibits the highest conductivity with a value of 3.0× 10-2 S .cm 1 at 700 ℃. Such conductive behavior agrees well with the refined results. The corresponding mechanism has been discussed in this paper.  相似文献   

10.
To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start- to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.  相似文献   

11.
The fast luminosity monitor counting the γ photons above a given energy threshold emitted from radiative Bhabha scattering has been operated in the BEPC Ⅱ to measure the relative luminosity bunch by bunch for the first time and used successfully in beam tuning of BEPC Ⅱ. In the relative mode the monitor is able to deliver the relative luminosities with an accuracy of 0.8 %. By steering the electron beam while observing the counting rate changes of the monitor the horizontal and vertical sizes of the bunch spots can be estimated as: Sxe+ =Sxe =0.356 mm, Sye+ =Sye- =0.011 mm.  相似文献   

12.
Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (〈0.1 pA), good plateau (≈800 V) and linearity range up to 200 Roentgen/h are obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.  相似文献   

13.
A new polarization rotator based on the silica photonic crystal fiber is proposed. The proposed polarization rotator photonic crystal fiber (PR-PCF) possesses a triangle jigsaw-shape core region. The full-vector finite-element method is used to analyze the phenomenon of polarization conversion between the quasi-TE and quasi-TM modes. Numerical simulations show that the wavelengths of 1.31 μm and 1.55 μm are converted with a nearly 100% polarization conversion ratio with their matched coupling length and has a relatively strong realistic fabrication tolerance - 100 nm on the y axis and 50 nm on the x axis. The full vectorial finite difference beam propagation method is used to confirm the performance of the proposed PR-PCF.  相似文献   

14.
The role of temperature on the oxidation dynamics of Cu20 on ZnO (0001) was investigated during the oxidation of Cu (111)/ZnO (0001) by using oxygen plasma as the oxidant. A transition from single crystalline Cu20 (111) orientation to micro-zone phase separation with multiple orientations was revealed when the oxidation temperature increased above 300 ~ C. The experimental results clearly show the effect of the oxidation temperature with the assistance of oxygen plasma on changing the morphology of Cu (111) film and enhancing the lateral nucleation and migration abilities of cuprous oxides. A vertical top-down oxidation mode and a lateral migration model were proposed to explain the different nucleation and growth dynamics of the temperature-dependent oxidation process in the oxidation of Cu (lll)/ZnO (0001).  相似文献   

15.
The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, has been proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector was designed and preliminarily optimized. In this paper an evolutionary genetic method, non-dominated sorting genetic algorithm II, is applied to optimize the injector beam dynamics, especially in the high-charge operation mode. Study shows that using an incident laser with rms transverse size of 1-1.2 ram, the normalized emittance of the electron beam can be kept below 1 mm.mrad at the end of the injector. This work, together with the previous optimization of the low-charge operation mode by using the iterative scan method, provides guidance and confidence for future construction and commissioning of the ERL-TF injector.  相似文献   

16.
Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber (PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. Then, the fission count of 238U and 235U in an individual uranium shell was obtained. In this work, MCNP5 and continuous energy cross sections ENDF/BV.0 were used for the analysis of fission rate distribution and fission count. The calculated results were compared with the experimental ones. The calculation of fission rate of DU and EU were found to agree with the measured ones within 10% except at the positions in polyethylene region and the two positions near the outer surface. Because the fission chamber was not considered in the calculation of the fission counts of 238U and 235U, the calculated results did not agree well with the experimental ones.  相似文献   

17.
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.  相似文献   

18.
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.  相似文献   

19.
We study an intense beam propagating through the double periodic focusing channel by the particle-core model, and obtain the beam envelope equation. According to the Poincare-Lyapunov theorem, we analyze the stability of beam envelope equation and find the beam halo. The soliton control method for controlling the beam halo-chaos is put forward based on mechanism of halo formation and strategy of controlling beam halo-chaos, and we also prove the validity of the control method, and furthermore, the feasible experimental project is given. We perform multiparticle simulation to control the halo by using the soliton controller. It is shown that our control method is effective. We also find the radial ion density changes when the ion beam is in the channel, not only the halo-chaos and its regeneration can be eliminated by using the nonlinear control method, but also the density uniformity can be found at beam's centre as long as an appropriate control method is chosen.  相似文献   

20.
DRAGON-I designed and manufactured by CAEP is a linear induction accelerator which can produce a 20 MeV-3 kA-60 ns electron beam. The high performance required for the machine is determined by the beam quality and thus is greatly dependent on the accelerator alignment. In order to reduce the chromatic effect of the beam, the stretched wire technique has been developed to measure magnetic axes of the cells precisely, and the dipole steering magnets have been equipped into each cell to correct its magnetic axis misalignment. Finally, the laser tracker has been used to examine the installation error of the accelerator. In this paper, different alignment techniques and the primary results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号