首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultra-high vacuum(UHV) compatible electron spectrometer employing a double toroidal analyzer has been developed. It is designed to be combined with a custom-made scanning tunneling microscope(STM) to study the spatially localized electron energy spectrum on a surface. A tip–sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite(HOPG) is employed to test the performance of the spectrometer.Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of-140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.  相似文献   

2.
冀东  刘冰  吕燕伍  邹杪  范博龄 《中国物理 B》2012,21(6):67201-067201
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

3.
We present analytical studies of electron acceleration in the low-density preplasma of a thin solid target by an intense femtosecond laser pulse. Electrons in the preplasma are trapped and accelerated by the ponderomotive force as well as the wake field. Two-dimensional particle-in-cell simulations show that when the laser pulse is stopped by the target, electrons trapped in the laser pules can be extracted and move forward inertially. The energetic electron bunch in the bubble is unaffected by the reflected pulse and passes through the target with small energy spread and emittance. There is an optimal preplasma density for the generation of the monoenergetic electron bunch if a laser pulse is given. The maximum electron energy is inverse proportion to the preplasma density.  相似文献   

4.
In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.  相似文献   

5.
The low temperature sample stage in a transmission electron microscope is used to investigate the charge ordering behaviours in a Bi0.4Ca0.6MnO3 film with a thickness of 110 nm at 103 K. Six different types of superlattice structures are observed using the selected-area electron diffraction (SAED) technique, while three of them match well with the modulation stripes in high-resolution transmission electron microscopy (HRTEM) images. It is found that the modulation periodicity and direction are completely different in the region close to the Bi0.4Ca0.6MnO3/SrTiO3 interface from those in the region a little further from the Bi0.4Ca0.6MnO3/SrTiO3 interface, and the possible reasons for this are discussed. Based on the experimental results, structural models are proposed for these localized modulated structures.  相似文献   

6.
The electron capture rates of 55Co and 56Ni in the ultra-strong magnetic field at four typical temperature- density points have been calculated using the nuclear shell model and Landan energy levels quantized approximate correction. The results show that the electron capture rates of 55Co and 56Ni are increased greatly in the ultra-strong magnetic field, and even exceed two orders of magnitude in the range from 4.414×10^13G to 2.207×10^27 G. The change rate of electron abundance, ye, of 55Co and 56Ni under the condition of B=4.414×10^15G in the magnetar surrounding has been calculated and discussed, the proportions of ye of 55Co and 56Ni in the total Ye have been reduced by 50 percent in all more than the condition without a magnetic field.  相似文献   

7.
Peking University is designing a new SRF gun that is composed of a quarter wave resonator (QWR) and an elliptical cavity. Compared to the elliptical cavity, the QWR is sufficiently compact at the same frequency and its electric field is quasi-DC. The RF parameters are determined by optimization of QWR cavity structure and the possible multipacting locations are analyzed by 2D MP simulation. The simulation results show that multipacting is not a critical issue for our optimized cavity structure.  相似文献   

8.
Modeling multipacting to steady state saturation is of interest in determining the performance of the micro-pulse electron gun. In this paper, a novel method is proposed to calculate the multipacting resonance param- eters for the gun. This method works well, and the 2-D simulation results suggest that steady state saturation can be achieved in the gun. After saturation the transition from two-surface multipacting to single-surface multipacting occurred, and an extensive range of electron emission time is a suggested way to avoid this kind of transition.  相似文献   

9.
A simple analysis is given for the optimum length of undulator in a self-seeding free electron laser (FEL). The obtained relations show the correlation between the undulator length and the system parameters. The power required for the seeding in the second part of the undulator and the overall efficiency of monochromatizating the seeding determine the length of the first part of the undulator; the magnitude of seeding power dominates the length of the second part of the undulator; the whole length of the undulator in a self-seeding FEL is determined by the overall efficiency for getting coherent seed, and is about half as long again as that of SASE, not including the dispersion section. The requirement of the dispersion section strength is also analyzed.  相似文献   

10.
Transmission electron microscopy(TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave(CDW) state below TCDW≈ 470 K. These two structural modulations can be well explained in terms of condensations of two-coupled phonon modes with wave vectors of q1= 0.62a*on the a*–b*plane and q2=0.23a*on the a*–c*plane. The atomic displacements occur along the b-axis direction for q1and along the c-axis direction for q2, respectively. Moreover, the correlation between q1and q2can be generally written as q1=(q2+ a*)/2 in the CDW state, suggesting the presence of essential coupling between q1and q2. A small fraction of Ir doping on the Pt site in Sr(Pt1-xIrx)2As2(x ≤ 0.06) could moderately change these CDW modulations and also affect their superconductivities.  相似文献   

11.
Undulators are key devices to produce brilliant synchrotron radiation at the synchrotron radiation facilities. In this paper we present a numerical computing method, including the computing program that has been developed to calculate the spontaneous radiation emitted from relativistic electrons in undulators by simulating the electrons' trajectory. The effects of electron beam emittance and energy spread have also been taken into account. Comparing with other computing methods available at present, this method has a few advantages with respect to several aspects. It can adopt any measured or arbitrarily simulated 3D magnetic field and arbitrary electron beam pattern for the calculation and it's able to analyze undulators of any type of magnetic structure. It's expected to predict precisely the practical radiation spectrum. The calculation results of a short period in-vacuum undulator and an Elliptically Polarized Undulator (EPU) at Shanghai Synchrotron Radiation Facility (SSRF) are presented as examples.  相似文献   

12.
刘晶晶 《中国物理 C》2010,34(2):171-176
Based on Weinberg-Salam theory the bremsstrahlung neutrino energy loss for nuclei ^24Mg, ^28Si,^32S, ^40Ca and ^56Fe are investigated in strong electron screening. Our results are compared with those of Dicus' and show that the latter are higher by 2 orders of magnitude in the density-temperature region of 10^8 g/cm^3 ≤p/μe ≤ 10^11 g/cm^3 and 2.5≤ T9≤ 4.5. On the other hand, the factor C shows that the maximum differences are 99.16%, 99.13%, 99.12%, 99.055%, 99.040% corresponding to the nuclei ^24Mg, ^28Si, ^32S, ^40Ca and ^56Fe.  相似文献   

13.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However, in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

14.
Persistent photoconductivity has been investigated by various models, among which the Macroscopic Barrier model, Large-Lattice-Relaxation model, and Random Local Potential Fluctuations model are mostly well known. Although the three well-known models have played important roles in describing the persistent photoconductivity, they are not the principal cause of persistent photoconductivity. In this paper a classical model originated from "selfmagnetism of electron gas" is proposed to illustrate the persistent photoconductivity phenomenon. This classical model is based on electron gas pulsation, which depends on the charge density. Different concentrations of current carriers create different frequencies in the system, and thus the system is sensitive to different wave lengths of incident light. Then the construction of different detectors can be possible for different wave lengths of incident light.  相似文献   

15.
Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy.The gels were analysed by using Fourier transform infrared spectrum,gel fraction and ionic conductivity (IC) measurement.The results show that the gel is crosslinked by EB irradiation,the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking;in addition,EB irradiation can promote the IC of PAN-PEO gels.There exists an optimum irradiation dose,at which the IC can increase dramatically.The IC changes of the PAN-PEO gels along with ID are divided into three regions:IC rapidly increasing region,IC decreasing region and IC balanced region.The cause of the change can be ascribed to two aspects,gel capturing electron degree and crosslinking degree.By comparing the IC-ID curves of different mass percents of PAN and PEO in gel,we found that PAN plays a more important role for gel IC promotion than PEO,since addition of PAN in gel causes the IC-ID curve sharper,while addition of PEO in gel causes the curve milder.  相似文献   

16.
In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field- emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74-114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field.  相似文献   

17.
A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.  相似文献   

18.
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.  相似文献   

19.
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.  相似文献   

20.
This paper reports that an experimental investigation of fast pitch angle scattering (FPAS) of runaway electrons in the EAST tokamak has been performed. From the newly developed infrared detector (HgCdTe) diagnostic system, the infrared synchrotron radiation emitted by relativistic electrons can be obtained as a function of time. The FPAS is analysed by means of the infrared detector diagnostic system and the other correlative diagnostic systems (including electron-cyclotron emission, hard x-ray, neutrons). It is found that the intensity of infrared synchrotron radiation and the electron-cyclotron emission signal increase rapidly at the time of FPAS because of the fast increase of pitch angle and the perpendicular velocity of the energetic runaway electrons. The Parail and Pogutse instability is a possible mechanism for the FPAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号