首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
The combination of deep wet etching and a magneto-rheological finishing(MRF) process is investigated to simultaneously improve laser damage resistance of a fused-silica surface at 355 nm. The subsequently deposited SiO2 coatings are researched to clarify the impact of substrate finishing technology on the coatings. It is revealed that a deep removal proceeding from the single side or double side had a significant impact on the laser-induced damage threshold(LIDT) of the fused silica, especially for the rear surface. After the deep etching, the MRF process that followed does not actually increase the LIDT, but it does ameliorate the surface qualities without additional LIDT degradation. The combination guarantee both the integrity of the surface’s finish and the laser damage resistance of the fused silica and subsequent SiO2 coatings.  相似文献   

2.
Conventional HfO2/SiO2 and Al2O3/HfO2/SiO2 double stack high reflective (HR) coatings at 532 nm are deposited by electron beam evaporation onto BK7 substrates. The laser-induced damage threshold (LIDT) of two kinds of HR coatings is tested, showing that the laser damage resistance of the double stack HR coatings (16 J/cm2) is better than that of the conventional HR coatings (12.8 J/cm2). Besides, the optical properties, surface conditions, and damage morphologies of each group samples are characterized. The results show that laser damage resistance of conventional HR coatings is determined by absorptive defect, while nodular defect is responsible for the LIDT of double stack HR coatings.  相似文献   

3.
The accumulation effects in high-reflectivity(HR) HfO2/SiO2 coatings under laser irradiation are investigated.The HR HfO2/SiO2 coatings are prepared by electron beam evaporation at 1 064 nm.The laser-induced damage threshold(LIDT) are measured at 1 064 nm and at a pulse duration of 12 ns,in 1-on-1 and S-on-1 modes.Multi-shot LIDT is lower than single-shot LIDT.The laser-induced and native defects play an important role in the multi-shot mode.A correlative theory model based on critical conduction band electron density is constructed to elucidate the experimental phenomena.  相似文献   

4.
The performances of HfO2/SiO2 single- and multi-layer coatings in vacuum influenced by contamination are studied. The surface morphology, the transmittance spectrum, and the laser-induced damage threshold are investigated. The results show that the contamination in vacuum mainly comes from the vacuum system and the contamination process is different for the HfO2 and SiO2 films. The laser-induced damage experiments at 1064 nm in vacuum show that the damage resistance of the coatings will decrease largely due to the organic contamination.  相似文献   

5.
The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.  相似文献   

6.
HfO2 and SiO2 single layer is deposited on glass substrate with plasma ion assistance provided by Leybold advanced plasma source (APS). The deposition is performed with a bias voltage in the range of 70-130 V for HfO2, and 70-170 V for SiO2. Optical, structural, mechanical properties, as well as absorption and laser induced damage threshold at 1064 nm of HfO2 and SiO2 single layer deposited with the plasma ion assistance are systematically investigated. With the increase of APS bias voltage, coatings with higher refractive index, reduced surface roughness, and higher laser-induced damage threshold (LIDT) are obtained, and no significant change of the absorption at 1064 nm is observed. For HfO2, a bias voltage can be identified to achieve coatings without any stress. However, too-high bias voltage can cause the increase of surface roughness and stress, and decrease the LIDT. The bias voltage can be properly identified to achieve coatings with desired properties.  相似文献   

7.
Single-pulse and multi-pulse damage behaviors of "standard"(with λ/4 stack structure) and "modified"(with reduced standing-wave field) HfO2/SiO2 mirror coatings are investigated using a commercial 50-fs,800-nm Ti:sapphire laser system.Precise morphologies of damaged sites display strikingly different features when the samples are subjected to various number of incident pulses,which are explained reasonably by the standing-wave field distribution within the coatings.Meanwhile,the single-pulse laser-induced damage threshold of the "standard" mirror is improved by about 14% while suppressing the normalized electric field intensity at the outmost interface of the HfO2 and SiO2 layers by 37%.To discuss the damage mechanism,a theoretical model based on photoionization,avalanche ionization,and decays of electrons is adopted to simulate the evolution curves of the conduction-band electron density during pulse duration.  相似文献   

8.
Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated with 2μm femtosecond pulse lasers (80fs, 1kHz). It is found that the Ta2O5/SiO2 HR coating has a higher capability of laser damage resistance than the ZrO2/SiO2 HR coating in the 2μm femtosecond regime. The scanning electron microscope results show that the damage sites of the ZrO2//SiO2 FIR coating have a relatively porous structure, the loose structure of coatings will provide more sites for water molecules, and the LIDTs of HR coatings will be reduced as a result of the strong water absorption at the wavelength of 2 μm.  相似文献   

9.
Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractive index of this coating varied from 1.31 to 1.42. A porous antireflective (AR) silica coating with the index of 1.27 was coated on the moisture-resistant coating surface. The two-layer coating possessed transmission up to 99.1% at wavelength of 966 nm, surface root-mean-square (RMS) roughness of 1.245 nm, and roughness of average (RA) of 0.961 nm. In the case of laser of 1053-nm laser wavelength and 1-ns pulse duration, the damage threshold of the two-layer coatings was more than 15 J/cm2.  相似文献   

10.
Using methyl triethoxysilicane as precursor, a moisture-resistant coating for neodymium-doped laser glass was developed by the sol-gel process. Colloidal silica was added in coating solution as modifier. The refractive index of this coating varied from 1.31 to 1.42. A porous antireflective (AR) silica coating with the index of 1.27 was coated on the moisture-resistant coating surface. The two-layer coating possessed transmission up to 99.1% at wavelength of 966 nm, surface root-mean-square (RMS) roughness of 1.245nm, and roughness of average (RA) of 0.961 nm. In the case of laser of 1053-nm laser wavelength and 1-ns pulse duration, the damage threshold of the two-layer coatings was more than 15 J/cm2.  相似文献   

11.
 研究了SiO2半波覆盖层对HfO2/SiO2高反射膜1064nm激光损伤的影响,分析薄膜的激光损伤特性及图貌得出, 对于单脉冲(1-ON-1)激光损伤,SiO2半波覆盖层能提高HfO2/SiO2高反膜的激光损伤阈值;可显著降低激光损伤程度,减小灾难性损伤发生的概率;可大幅度提高HfO2/SiO2高反膜膜的抗激光损伤能力。  相似文献   

12.
SiO2半波覆盖层对HfO2/SiO2高反射膜激光损伤的影响   总被引:6,自引:4,他引:2       下载免费PDF全文
研究了SiO2半波覆盖层对HfO2/SiO2高反射膜1064nm激光损伤的影响,分析薄膜的激光损伤特性及图貌得出-对于单脉冲(1-ON-1)激光损伤,SiO2半波覆盖层能提高HfO2/SiO2高反射膜的激光损伤厨值,可显著降低激光损伤程度,减小灾难性损伤发生的概率,可大幅度提高FIfO2/SiO2高反射膜的抗激光损伤能力。  相似文献   

13.
胡建平  马平  许乔 《强激光与粒子束》2003,15(11):1053-1056
 用1 064nm激光实验研究了HfO2/SiO2薄膜的激光损伤增强效应,实验以薄膜激光损伤阈值70%的激光能量开始,采用N-ON-1方式处理薄膜,激光脉冲的能量增量为5J/cm2。实验结果表明,激光处理薄膜表面能使激光损伤阈值平均提高到3倍左右,并且薄膜的损伤尺度也明显减小。对有缺陷的薄膜,其缺陷经低能量激光后熔和消除,其抗激光损伤能力得到增强,但增强得并不显著,而薄膜本身的激光预处理,可以使其激光损伤阈值大大提高。  相似文献   

14.
HfO_2/SiO_2高反射膜的缺陷及其激光损伤   总被引:1,自引:0,他引:1  
用原子力、Normaski和扫描电子显微镜等分析仪器 ,对高损伤阈值薄膜常采用的 Hf O2 /Si O2 薄膜进行了表面显微图象研究 ,分析了薄膜常见的表面缺陷 ,如节瘤 ,孔洞和划痕等。薄膜表面缺陷的激光损伤实验表明 ,不同缺陷的抗激光损伤能力大不相同 ,节瘤缺陷最低 ,约为 1 5 J/ cm2 ,薄膜的损伤阈值主要由其决定 ,孔洞的激光损伤能力与节瘤相比较高 ,约为节瘤的 2~ 3倍。节瘤缺陷在低能量密度的激光损伤所形成的孔洞 ,与镀制过程中形成的孔洞形貌相似 ,激光再损伤能力也相似。低能量密度的激光把节瘤缺陷变为孔洞缺陷是激光预处理提高薄膜损伤阈值的原因之一  相似文献   

15.
HfO2/SiO2高反射膜的缺陷及其激光损伤   总被引:14,自引:10,他引:4       下载免费PDF全文
用原子力、Normaski和扫描电子显微镜等分析仪器,对高损伤阈值薄膜常采用HfO2/SiO2薄膜进行了表面显微图象研究,分析了薄膜常见的表面缺陷,如节瘤,孔洞和划痕等。薄膜表面缺陷的激光损伤实验表明,不同缺陷的抗激光损伤能力不大相同。节瘤缺陷最低,约为15J/cm^2,薄膜的损伤阈值主要由其决定,孔洞的激光损伤能力与节瘤相比较高,约为节瘤的2-3倍。节瘤缺陷在低能量密度的激光损伤所形成的孔洞,与镀制过程中形成的孔洞形貌相似,激光再损伤能力也相似。低能量密度的激光把瘤缺陷变为孔洞缺陷是激光预处理提高薄膜损伤阈值的原因之一。  相似文献   

16.
The 0.532-μm laser conditioning of HfO2/SiO2 third harmonic separator fabricated by electron-beam evaporation (EBE) was studied.The laser induced damage threshold (LIDT) of the separator determined by 1-on-1 test is 9.1 J/cm2 and it is 15.2 J/cm2 after laser conditioning determined by raster scanning.Two kinds of damage morphologies,taper pits and flat bottom pits,are found on the sample surface and they show different damage behaviors.The damage onset of taper pits does not change obviously and the laser conditioning effect is contributed to the flat bottom pits,which limits the application of laser conditioning.  相似文献   

17.
The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.  相似文献   

18.
KrFLaser-inducedDamagetoZrO_2/SiO_2Coatings¥WANGNaiyan;GAOHuailin(ChinaInstituteofAtomicEnergy,P.O.Box275-7,Bejijng102413,Chin...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号