首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hysteresis loops and energy products have been calculated systematically by a three-dimensional(3D) software OOMMF for Sm–Co/α-Fe/Sm–Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy.Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional(1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.  相似文献   

2.
In this paper, the crossing point property of the i-v hysteresis curve in a memristor-capacitor (MC) circuit is analyzed. First, the ideal passive memristor on the crossing point property of i-v hysteresis curve is studied. Based on the analysis, the analytical derivation with respect to the crossing point location of MC circuit is given. Then the example of MC with linear memristance-versus-charge state map is demonstrated to discuss the drift property of cross-point location, caused by the frequency and capacitance value.  相似文献   

3.
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fa- tigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respec- tively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.  相似文献   

4.
Bismuth-containing semiconductor material is a hot topic in photocatalysts because of its effective absorption under the visible light. In this paper, we expect to explore a new bismuth-based photocatalyst by studying the subsolidus phase relations of the Bi2O3-Fe2O3-La2O3 system. The X-ray diffraction data shows that in this ternary system the ternary compound does not exist, while seven binary compounds (including one solid solution series Bi1-xLaxO1.5 with 0.167 〈 x 〈 0.339) are obtained and eight compatibility triangles are determined.  相似文献   

5.
The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.  相似文献   

6.
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas(2DEG)at oxide interfaces.Due to the presence of oxygen vacancies at the SrTiO3surface,metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3has Al,Ti,Zr,or Hf elements at the B sites.Furthermore,relying on interface-stabilized oxygen vacancies,we have created a new type of 2DEG at the heterointerface between SrTiO3and a spinelγ-Al2O3epitaxial film with compatible oxygen ion sublattices.This 2DEG exhibits an electron mobility exceeding 100000 cm2·V 1·s 1,more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces.Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides.  相似文献   

7.
In recent years, some important research indicated that the visible-light activity of photocatalysts could be enhanced via incorporating p-block non-metal elements into the lattice. In this paper, we investigated the electronic structures of pure and different non-metal (C, N, S, F, Cl, and Br) doped α-Bi2O3 using first-principles calculations based on the density functional theory. The band structures, the electronic densities of states, and the effective masses of electrons and holes for doped α-Bi2O3 were obtained and analyzed. The N and S dopings narrowed the band gap and reduced the effective mass of the carriers, which are beneficial for the photocatalytic performance. The theoretical predication was further confirmed by the experimental results.  相似文献   

8.
In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaA103 (100) single-crystal substrates by metal- organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700 ℃ BTO nanoparticles begin to appear. It sug- gests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique.  相似文献   

9.
The creation and propagation of longitudinal acoustic phonons (LAPs) in high quality hematite thin films (α-Fe203) epitaxially grown on different substrates (BaTiO3, SrTiO3, and LaAlO3) are investigated using the femtosecond pump- probe technique. Transient reflection measurements (AR/R) indicate the photo-excited electron dynamics, and the initial decay less than 1 ps and the slow decay of -500 ps are attributed to the electron-LO phonon coupling and electron-hole nonradiative recombination, respectively. LAPs in α-Fe2O3 film can be created by ultrafast excitation of the ligand field state, such as the ligand field transitions under 800-nm excitation as well as the ligand to metal charge-transfer with 400- nm excitation. The strain modulations of the sound velocity and the out-of-plane elastic properties are demonstrated in α-Fe2O3 film on different substrates.  相似文献   

10.
Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe304) and maghemite (γ-Fe203), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanopar- ticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.  相似文献   

11.
Photon-stimulated ion desorption from deuterated formic acid chemisorbed on Si(100) has been studied using pulsed synchrotron radiation in the energy region of the oxygen 1s electron excitation. The O 1s electrons of hydroxyl oxygen and carbonyl oxygen could be selectively excited in the O K-edge region because the chemical environments are different. It is found that the CDO+ yield is enhanced at the O 1s(C---O)→σ*(C---O) resonance and the CD+ yield at the O 1s(C=O)→σ*(C---O) resonance. The results indicate that ion desorption is related both to the antibonding character of excited molecular orbitals and the local character of core hole orbitals.  相似文献   

12.
We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved.  相似文献   

13.
Atomic layer deposited (ALD) Al2O3/dry-oxidized ultrathin SiO2 films as a high-k gate dielectric grown on 8° off-axis 4H-SiC (0001) epitaxial wafers are investigated in this paper. The metal-insulation-semiconductor (MIS) capacitors, respectively with different gate dielectric stacks (Al2O3/SiO2, Al2O3, and SiO2) are fabricated and compared with each other. The I-V measurements show that the Al2O3/SiO2 stack has a high breakdown field (≥12 MV/cm) comparable to SiO2, and a relatively low gate leakage current of 1 × 10-7 A/cm2 at an electric field of 4 MV/cm comparable to Al2O3. The 1-MHz high frequency C-V measurements exhibit that the Al2O3/SiO2 stack has a smaller positive flat-band voltage shift and hysteresis voltage, indicating a less effective charge and slow-trap density near the interface.  相似文献   

14.
Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, opemcircuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.  相似文献   

15.
We describe the fabrication of high performance YBa2Cu3O7-δ(YBCO) radio frequency(RF) superconducting quantum interference devices(SQUIDs), which were prepared on 5 mm×5 mm LaAlO3(LAO) substrates by employing stepedge junctions(SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47°to 61°, which is steep enough to ensure the formation of grain boundaries(GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition(PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH.Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/Φ0, a white flux noise of 29 μΦ0/(Hz)1/2, and the magnetic field sensitivity as high as 80 fT/(Hz)1/2.These devices have been applied in magnetocardiography and geological surveys.  相似文献   

16.
17.
This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.  相似文献   

18.
 利用低温超高压装置,测量了Hg系样品HgBa2Ca2Cu3O8+y(Hg-1223)超导转变温度Tc在压力作用下的增强效应。压力最高达7.8 GPa,超导起始转变温度常压下为130 K,加压到5.4 GPa时获得最高温度为140 K。在5.4 GPa以下获得dTc/dp为1.85 K/GPa。用压力作用下氧原子位置的改变使载流子浓度提高和CuO2面间的耦合作用来解释高温超导的压力效应。  相似文献   

19.
We study the binding of molecular oxygen to a (5, 0) single walled SiC nanotube, by means of density functional calculations. The center of a hexagon of silicon and carbon atoms in sites on SiCNT surfaces is the most stable adsorption site for 02 molecule, with a binding energy of -38.22 eV and an average Si-O binding distance of 1.698 A. We have also tested the stability of the 02-adsorbed SiCNT/CNT with ab initio molecular dynamics simulation which have been carried out at room temperature. Furthermore, the adsorption of 02 on the single walled carbon nanotubes has been investigated. Our first-principles calculations predict that the 02 adsorptive capability of silicon carbide nanotubes is much better than that of carbon nanotubes. This might have potential for gas detection and energy storage.  相似文献   

20.
Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号