首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From the capacitance–voltage curves and current–voltage characteristics of the In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors (HFETs) with side-Ohmic contacts and normal-Ohmic contacts, two-dimensional electron gas (2DEG) electron mobility was calculated. It is found that the polarization Coulomb field scattering (PCF) is closely related to the normal-Ohmic contact processing, and the PCF was weakened by side-Ohmic contact processing in In0.17Al0.83N/AlN/GaN HFETs, similar to that in AlGaN/AlN/GaN HFET devices. Further, due to the stronger spontaneous polarization in the thinner In0.17Al0.83N barrier layer, the influence of the gate bias on the PCF in In0.17Al0.83N/AlN/GaN HFETs is greater than that in AlGaN/AlN/GaN HFETs. As a result, the PCF in In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is stronger than that in AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Moreover, the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is increased by more than twice compared with the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts.  相似文献   

2.
<正>A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method,the Si_xN_y interlayer which is deposited on an A1N buffer layer in situ is introduced to grow the GaN film laterally.The crack-free GaN film with thickness over 1.7 micron is successfully grown on an Si(111) substrate. A synthesized GaN epilayer is characterized by X-ray diffraction(XRD),atomic force microscope(AFM),and Raman spectrum.The test results show that the GaN crystal reveals a wurtzite structure with the(0001) crystal orientation and the full width at half maximum of the X-ray diffraction curve in the(0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an Si_xN_y interlayer.In addition,Raman scattering is used to study the stress in the sample.The results indicate that the Si_xN_y interlayer can more effectively accommodate the strain energy.So the dislocation density can be reduced drastically,and the crystal quality of GaN film can be greatly improved by introducing an Si_xN_y interlayer.  相似文献   

3.
Morphology of nonpolar (1120) a-plane GaN epilayers on r-plane (1102) sapphire substrate grown by low-pressure metal-organic vapour deposition was investigated after KOH solution etching. Many micron- and nano-meter columns on the a-plane GaN surface were observed by scanning electron microscopy. An etching mechanism model is proposed to interpret the origin of the peculiar etching morphology. The basal stacking fault in the a-plane GaN plays a very important role in the etching process.  相似文献   

4.
彭冬生  陈志刚  谭聪聪 《中国物理 B》2012,21(12):128101-128101
A method to drastically reduce dislocation density in a GaN film grown on an Si(111) substrate is newly developed. In this method, the SixNy interlayer which is deposited on an AlN buffer layer in situ is introduced to grow the GaN film laterally. The crack-free GaN film with thickness over 1.7 micron is grown on an Si(111) substrate successfully. Synthesized GaN epilayer is characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and Raman spectrum. The test results show that the GaN crystal reveals a wurtzite structure with the <0001> crystal orientation and the full width at half maximum of the X-ray diffraction curve in the (0002) plane is as low as 403 arcsec for the GaN film grown on the Si substrate with an SixNy interlayer. In addition, Raman scattering is used to study the stress in the sample. The results indicate that the SixNy interlayer can more effectively accommodate the strain energy. So the dislocation density can be reduced drastically, and the crystal quality of GaN film can be greatly improved by introducing SixNy interlayer.  相似文献   

5.
A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV-visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV-visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (△Eg = 1 eV ) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement.  相似文献   

6.
Al x Ga 1-x N/GaN high-electron-mobility transistor (HEMT) structures with Al composition ranging from x = 0.13 to 0.36 are grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The effects of Al content on crystal quality, surface morphology, optical and electrical characteristics of the AlGaN/GaN heterostructures have been analyzed. Although high Al-content (36%) heterostructure exhibits a distinguished photoluminescence peak related to recombination between the two-dimensional electron gas and photoexcited holes (2DEG-h), its crystal quality and rough surface morphology are poor. 2DEG mobility increases with the Al content up to 26% and then it apparently decreases for high Al-content (36%) AlGaN/GaN heterostructure. The increase of sheet carrier density with the increase of Al content has been observed. A high mobility at room temperature of 2105 cm 2 /V s with a sheet carrier density of n s = 1.10 × 10 13 cm -2 , for a 26% Al-content AlGaN/GaN heterostructure has been obtained, which is approaching state-of-the-art for HEMT grown on SiC. Sheet resistance as low as 274 Ω/□ has also been achieved.  相似文献   

7.
Ni/Au Schottky contacts on A1N/GaN and A1GaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an A1GaN/GaN diode by self-consistently solving Schrodinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostrncture results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an A1GaN/GaN diode.  相似文献   

8.
Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity are analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the values of relative permittivity and polarization sheet charge density of AlN/GaN diode are both much smaller than the ones of AlGaN/GaN diode, and also much lower than the theoretical values. Moreover, by fitting the measured forward 1-V curves, the extracted dislocations existing in the barrier layer of the AlN/GaN diode are found to be much more than those of the AlGaN/GaN diode. As a result, the conclusion can be made that compared with AlGaN/GaN diode the Schottky metal has an enhanced influence on the strain of the extremely thinner AlN barrier layer, which is attributed to the more dislocations.  相似文献   

9.
The influence of buffer layer growth conditions on the crystal quality and residual stress of GaN film grown on silicon carbide substrate is investigated.It is found that the Al GaN nucleation layer with high growth temperature can efficiently decrease the dislocation density and stress of the GaN film compared with Al N buffer layer.To increase the light extraction efficiency of GaN-based LEDs on Si C substrate,flip-chip structure and thin film flip-chip structure were designed and optimized.The fabricated blue LED had a maximum wall-plug efficiency of 72% at 80 m A.At 350 m A,the output power,the Vf,the dominant wavelength,and the wall-plug efficiency of the blue LED were 644 m W,2.95 V,460 nm,and 63%,respectively.  相似文献   

10.
任舰  苏丽娜  李文佳 《物理学报》2018,67(24):247202-247202
制备了晶格匹配In_(0.17)Al_(0.83)N/GaN异质结圆形平面结构肖特基二极管,通过测试和拟合器件的电容-频率曲线,研究了电容的频率散射机制.结果表明:在频率高于200 kHz后,积累区电容随频率出现增加现象,而传统的电容模型无法解释该现象.通过考虑漏电流、界面态和串联电阻等影响对传统模型进行修正,修正后的电容频率散射模型与实验结果很好地符合,表明晶格匹配In_(0.17)Al_(0.83)N/GaN异质结电容随频率散射是漏电流、界面态和串联电阻共同作用的结果.  相似文献   

11.
室温300K下,由于AlxGa1-xN的带隙宽度可以从GaN的3.42eV到AlN的6.2eV之间变化,所以AlxGa1-xN是紫外光探测器和深紫外LED所必需的外延材料.高质量高铝组分AlxGa1-xN材料生长的一大困难就是AlxGa1-xN与常用的蓝宝石衬底之间大的晶格失配和热失配.因而采用MOCVD在GaN/蓝宝石上生长的AlxGa1-xN薄膜由于受张应力作用非常容易发生龟裂.GaN/AlxGa1-xN超晶格插入层技术是释放应力和减少AlxGa1-xN薄膜中缺陷的有效方法.研究了GaN/AlxGa1-xN超晶格插入层对GaN/蓝宝石上AlxGa1-xN外延薄膜应变状态和缺陷密度的影响.通过拉曼散射探测声子频率从而得到材料中的残余应力是一种简便常用的方法,AlxGa1-xN外延薄膜的应变状态可通过拉曼光谱测量得到.AlxGa1-xN外延薄膜的缺陷密度通过测量X射线衍射得到.对于具有相同阱垒厚度的超晶格,例如4nm/4nm,5nm/5nm,8nm/8nm的GaN/Al0.3Ga0.7N超晶格,研究发现随着超晶格周期厚度的增加AlxGa1-xN外延薄膜缺陷密度降低,AlxGa1-xN外延薄膜处于张应变状态,且5nm/5nmGaN/Al0.3Ga0.7N超晶格插入层AlxGa1-xN外延薄膜的张应变最小.在保持5nm阱宽不变的情况下,将垒宽增大到8nm,即十个周期的5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层使AlxGa1-xN外延层应变状态由张应变变为压应变.由X射线衍射结果计算了AlxGa1-xN外延薄膜的刃型位错和螺型位错密度,结果表明超晶格插入层对螺型位错和刃型位错都有一定的抑制效果.透射电镜图像表明超晶格插入层使位错发生合并、转向或是使位错终止,且5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层导致AlxGa1-xN外延薄膜中的刃型位错倾斜30°左右,释放一部分压应变.  相似文献   

12.
GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling Al/N flux ratio during high temperature AlN buffer growth. The Raman results illustrate that the N-polarity GaN films have frequency shifts at $A_{1}$(LO) mode because of their high carrier density; the forbidden $A_{1}$(TO) mode occurs for mixed-polarity GaN films due to the destroyed translation symmetry by inversion domain boundaries (IDBS); Raman spectra for Ga-polarity GaN films show that they have neither frequency shifts mode nor forbidden mode. These results indicate that Ga-polarity GaN films have a better quality, and they are in good agreement with the results obtained from the room temperature Hall mobility. The best values of Ga-polarity GaN films are 1042 cm$^{2}$/Vs with a carrier density of 1.0$\times $10$^{17}$~cm$^{ - 3}$.  相似文献   

13.
In this paper the trapping effects in Al2O3/In0.17Al0.83N/Ga N MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/In Al N and In Al N/Ga N interface. Trap states in In Al N/Ga N heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas(2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the In Al N barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states.  相似文献   

14.
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

15.
《中国物理 B》2021,30(9):97201-097201
To study the electron transport properties in InGaN channel-based heterostructures,a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier.Various scattering mechanisms,such as dislocation impurity(DIS) scattering,polar optical phonon(POP) scattering,piezoelectric field(PE) scattering,interface roughness(IFR) scattering,deformation potential(DP) scattering,alloy disorder(ADO) scattering from InGaN channel layer,and temperature-dependent energy bandgaps are considered in the calculation model.A contrast of AlInGaN/AlN/InGaN/GaN double heterostructure(DH) to the theoretical AlInGaN/AlN/InGaN single heterostructure(SH) is made and analyzed with a full range of barrier alloy composition.The effect of channel alloy composition on InGaN channel-based DH with technologically important Al(In,Ga)N barrier is estimated and optimal indium mole fraction is 0.04 for higher mobility in DH with Al_(0.4)In_(0.07)Ga_(0.53)N barrier.Finally,the temperature-dependent two-dimensional electron gas(2 DEG) density and mobility in InGaN channel-based DH with Al_(0.83)In_(0.13)Ga_(0.0)4 N and Al_(0.4)In_(0.07)Ga_(0.53)N barrier are investigated.Our results are expected to conduce to the practical application of InGaN channel-based heterostructures.  相似文献   

16.
The Raman spectra of unintentionally doped gallium nitride (GaN) and Mg-doped GaN films were investigated and compared at room temperature and low temperature. The differences of E2 and A1(LO) mode in two samples are discussed. Stress relaxation is observed in Mg-doped GaN, and it is suggested that Mg-induced misfit dislocation and electron–phonon interaction are the possible origins. A peak at 247 cm−1 is observed in both the Raman spectra of GaN and Mg-doped GaN. Temperature-dependent Raman scattering experiment of Mg-doped GaN shows the frequency and intensity changes of this peak with temperature. This peak is attributed to the defect-induced vibrational mode. Translated from Chinese Journal of Semiconductors, 2005, 26(4) (in Chinese)  相似文献   

17.
In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the A1GaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of Ⅰ-Ⅴ, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer A1GaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-p-m wide (Such an A1GaN/GaN HEMT is denoted as A1GaN/GaN HEMT (10 × 125 μm)). The improved large signal model simulates the Ⅰ-Ⅴ characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

18.
An A1GaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentration in the GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. A significant increase of the full width at the half maximum of the (002) rocking curves when the doping concentration reaches 2.5 × 10^19 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the A1GaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.  相似文献   

19.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

20.
SiNx is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiNx films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号