首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiao-Fang Tang 《中国物理 B》2022,31(3):37103-037103
High-quality large 1$T$ phase of Ti$X_2$ ($X ={\rm Te}$, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported $A_{1g}$ and $E_g$ modes, the rarely reported $E_u$ mode ($\sim$183 cm$^{-1}$ for TiTe$_2$, and $\sim$185 cm$^{-1}$ for TiS$_2$), and even the unexpected $K$ mode ($\sim$85 cm$^{-1}$) of TiTe$_2$. Most phonons harden with the decrease of temperature, except that the $K$ mode of TiTe$_2$ and the $E_u$ and "$A_{2u}$/Sh" modes of TiS$_2$ soften with the decrease of temperature. In addition, we also found phonon changes in TiSe$_2$ that may be related to charge density wave phase transition. Our results on Ti$X_2$ phonons will help to understand their charge density wave and superconductivity.  相似文献   

2.
This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consists of a high-temperature (HT) A1N layer and a low-temperature (LT) A1N layer grown at 800℃ and 600℃, respectively. It is demonstrated that the HT-A1N layer can result in the growth of GaN epilayer in Ga-polarity and the LT-A1N layer is helpful for the improvement of the epilayer quality. It is observed that the carrier mobility of the GaN epilayer increases from 458 to 858cm^2/V.s at room temperature when the thickness of LT-A1N layer varies from 0 to 20nm. The full width at half maximum of x-ray rocking curves also demonstrates a substantial improvement in the quality of GaN epilavers by the utilization of LT-A1N layer.  相似文献   

3.
薛军帅  郝跃  张进成  倪金玉 《中国物理 B》2010,19(5):57203-057203
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423~eV to 3.438~eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3~cm$^{ - 1}$ to 572.9~cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700~$^{\circ}$C to 1050~$^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.  相似文献   

4.
杨恢东  苏中义 《中国物理》2006,15(6):1374-1378
The role of hydrogen in hydrogenated microcrystalline silicon ($\mu $c-Si:H) thin films in deposition processes with very high frequency plasma-enhanced chemical vapour deposition (VHF-PECVD) technique have been investigated in this paper. With \textit{in situ} optical emission spectroscopy (OES) diagnosis during the fabrication of $\mu $c-Si:H thin films under different plasma excitation frequency $\nu _{\rm e }$ (60MHz--90MHz), the characteristic peak intensities ($I_{{\rm SiH}^*}$, $I_{{\rm H}\alpha^*}$ and $I_{{\rm H}\beta ^*}$) in SiHVHF-PECVD技术 氢化微晶硅 光发射光谱 薄膜学VHF-PECVD technique, hydrogenated microcrystalline silicon, role of hydrogen, optical emission spectroscopyProject supported by the Natural Science Foundation of Guangdong Province, China (Grant No 05300378), the State Key Development Program for Basic Research of China (Grant Nos G2000028202 and G2000028203) and the Program on Natural Science of Jinan University, Guangzhou, China (Grant No 51204056).2005-11-252005-11-252006-01-05The role of hydrogen in hydrogenated microcrystalline silicon (μc-Si:H) thin films in deposition processes with very high frequency plasma-enhanced chemical vapour deposition (VHF-PECVD) technique have been investigated in this paper. With in situ optical emission spectroscopy (OES) diagnosis during the fabrication of μc-Si:H thin films under different plasma excitation frequency Ve (60MHz-90MHz), the characteristic peak intensities (IsiH*, IHα* and IHβ* ) in SiH4+H2 plasma and the ratio of (IHα* + IHβ* ) to IsiH* were measured; all the characteristic peak intensities and the ratio (IHα* + IHβ* )/IsiH* are increased with plasma excitation frequency. It is identified that high plasma excitation frequency is favourable to promote the decomposition of SiH4+H2 to produce atomic hydrogen and SiHx radicals. The influences of atomic hydrogen on structural properties and that of SiHx radicals on deposition rate of μc-Si:H thin films have been studied through Raman spectra and thickness measurements, respectively. It can be concluded that both the crystalline volume fraction and deposition rate are enhanced with the increase of plasma excitation frequency, which is in good accord with the OES results. By means of FTIR measurements, hydrogen contents of μc-Si:H thin films deposited at different plasma excitation frequency have been evaluated from the integrated intensity of wagging mode near 640 cm^-1. The hydrogen contents vary from 4% to 5%, which are much lower than those of μc-Si:H films deposited with RF-PECVD technique. This implies that μc-Si:H thin films deposited with VHF-PECVD technique usually have good stability under light-soaking.  相似文献   

5.
We investigate the effect of A/N ratio of the high temperature (HT) AIN buffer layer on polarity selection and electrical quality of GaN films grown by radio frequency molecular beam epitaxy. The results show that low Al/N ratio results in N-polarity GaN films and intermediate Al/N ratio leads to mixed-polarity GaN films with poor electrical quality. GaN films tend to grow with Ga polarity on Al-rich AIN buffer layers. GaN films with different polarities are confirmed by in-situ reflection high-energy electron diffraction during the growth process. Wet chemical etching, together with atomic force microscopy, also proves the polarity assignments. The optimum value for room-temperature Hall mobility of the Ga-polarity GaN film is 703cm^2/V.s, which is superior to the N-polarity and mixed-polarity GaN films.  相似文献   

6.
冯倩  龚欣  张晓菊  郝跃 《中国物理》2005,14(10):2133-2136
Both the electrical and optical properties are studied of the GaN:Si films with carrier concentrations ranging from 10^17cm^-3 to 10^19cm^-3.rhe results indicate that the increase in slope of carrier concentration starts to slow down when the flow rate of SiH4 is larger than 6.38μmol/min, which is attributed to the amphoteric character of Si. At the same time, the photoluminescence results show that the FWHM of UV is widened,which can be interpreted quantitatively with a semi-classic model. Furthermore, the intensity ratio between the yellow and the UV luminescences reduces monotonically with Si dopants increasing.  相似文献   

7.
Until recently, molecular beam epitaxy (MBE) has been behind metalorganic chemical vapor deposition (MOCVD) as a growth technique for III-nitride thin films, due to the lack of nitrogen source powerful enough for the growth in vacuum and the understanding of growth mechanism. We have clarified that the quality of GaN epilayers on sapphire substrates grown by N2 plasma-assisted MBE can be much improved by realizing Ga-polarity growth mode, which enables us to fabricate HFETs using the MBE-grown AIGaN/GaN 2DEG structures. The Ga-polarity growth mode was found to be achieved by Al high temperature buffer process, In flux exposure etc., and directly confirmed by coaxial impact collision ion scattering spectroscopy (CAICISS) technique. The relation between the surface reconstruction structure of GaN epilayers and the lattice polarity of the epilayers is also shown.  相似文献   

8.
Cheng-Yu Huang 《中国物理 B》2022,31(9):97401-097401
Based on the self-terminating thermal oxidation-assisted wet etching technique, two kinds of enhancement mode Al$_{2}$O$_{3}$/GaN MOSFETs (metal-oxide-semiconductor field-effect transistors) separately with sapphire substrate and Si substrate are prepared. It is found that the performance of sapphire substrate device is better than that of silicon substrate. Comparing these two devices, the maximum drain current of sapphire substrate device (401 mA/mm) is 1.76 times that of silicon substrate device (228 mA/mm), and the field-effect mobility ($\mu_{\rm FEmax}$) of sapphire substrate device (176 cm$^{2}$/V$\cdot$s) is 1.83 times that of silicon substrate device (96 cm$^{2}$/V$\cdot$s). The conductive resistance of silicon substrate device is 21.2 $\Omega {\cdot }$mm, while that of sapphire substrate device is only 15.2 $\Omega {\cdot }$mm, which is 61% that of silicon substrate device. The significant difference in performance between sapphire substrate and Si substrate is related to the differences in interface and border trap near Al$_{2}$O$_{3}$/GaN interface. Experimental studies show that (i) interface/border trap density in the sapphire substrate device is one order of magnitude lower than in the Si substrate device, (ii) Both the border traps in Al$_{2}$O$_{3}$ dielectric near Al$_{2}$O$_{3}$/GaN and the interface traps in Al$_{2}$O$_{3}$/GaN interface have a significantly effect on device channel mobility, and (iii) the properties of gallium nitride materials on different substrates are different due to wet etching. The research results in this work provide a reference for further optimizing the performances of silicon substrate devices.  相似文献   

9.
An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values. New bands around 300 and 669 cm-1, that are not observed in undoped GaN, are found. They are assigned to disorder-activated mode and local vibration mode (LVM), respectively. After annealing, the intensity ratio between the LVM and E2 (high) mode, i.e., ILVM /IE2 (high) , increases. The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN, and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN. The ferromagnetic character and the carrier density of our GaMnN sample are discussed.  相似文献   

10.
This paper reports that the m-plane GaN layer is grown on (200)-plane LiAlO2 substrate by metal-organic chemical wpour deposition (MOCVD) method. Tetragonal-shaped crystallites appear at the smooth surface. Raman measurement illuminates the compressive stress in the layer which is released with increasing the layer's thickness. The high transmittance (80%), sharp band edge and excitonic absorption peak show that the GaN layer has good optical quality. The donor acceptor pair emission peak located at -3.41 eV with full-width at half maximum of 120 meV and no yellow peaks in the photoluminescence spectra partially show that no Li incorporated into GaN layer from the LiAlO2 substrate.  相似文献   

11.
张志勇  贠江妮  张富春 《中国物理》2007,16(9):2791-2797
The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration.  相似文献   

12.
Jian-Ke Yao 《中国物理 B》2023,32(1):18101-018101
For the crystalline temperature of BaSnO$_{3}$ (BTO) was above 650 ℃, the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process. In the article, the microstructure, optical and electrical of BTO and In$_{2}$O$_{3}$ mixed transparent conductive BaInSnO$_x$ (BITO) film deposited by filtered cathodic vacuum arc technique (FCVA) on glass substrate at room temperature were firstly reported. The BITO film with thickness of 300 nm had mainly In$_{2}$O$_{3}$ polycrystalline phase, and minor polycrystalline BTO phase with (001), (011), (111), (002), (222) crystal faces which were first deposited at room temperature on amorphous glass. The transmittance was 70%-80% in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength. The basic optical properties included the real and imaginary parts, high frequency dielectric constants, the absorption coefficient, the Urbach energy, the indirect and direct band gaps, the oscillator and dispersion energies, the static refractive index and dielectric constant, the average oscillator wavelength, oscillator length strength, the linear and the third-order nonlinear optical susceptibilities, and the nonlinear refractive index were all calculated. The film was the n-type conductor with sheet resistance of 704.7 $\Omega /\Box $, resistivity of 0.02 $\Omega \cdot$cm, mobility of 18.9 cm$^{2}$/V$\cdot$s, and carrier electron concentration of $1.6\times 10^{19}$ cm$^{-3}$ at room temperature. The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.  相似文献   

13.
邢海英  牛萍娟  谢玉芯 《中国物理 B》2012,21(7):77801-077801
An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values. New bands around 300 and 669 cm-1, that are not observed in undoped GaN, are found. They are assigned to disorder-activated mode and local vibration mode (LVM), respectively. After annealing, the intensity ratio between the LVM and E2(high) mode, i.e., ILVM=IE2(high), increases. The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN, and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN. The ferromagnetic character and the carrier density of our GaMnN sample are discussed.  相似文献   

14.
曲艺  张馨  陈红  高锦岳  周大凡 《中国物理》2005,14(7):1428-1432
利用溶胶凝胶方法,在硅碱玻璃底板上制备的透明低电阻SnO2:F薄膜,是一种低辐射导电薄膜。将SnCl4·5H2O 和 NH4F 溶解在50%乙醇和50%水的溶液中。制备条件为底板温度450℃,喷嘴与底板之间的距离60mm,载气流速8 L/min,制备时间5分钟。制成的SnO2:F薄膜面电阻为2Ω/□,可重复性好。并且文中还定性给出了SnO2:F薄膜其红外反射率与面电阻之间的关系。  相似文献   

15.
Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001) with different substrate reconstructions. The results indicate that GaN films grown on bare SiC(0001) are of the Ga-polarity, while GaN films grown on SiC(0001) with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface. With the interchange, the GaN films are of the Ga-polarity.  相似文献   

16.
Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited Al2O3 dielectric and reactively sputtered TaN electrodes in application to radio frequency integrated circuits have been characterized electrically. The capacitors exhibit a high density of about 6.05 fF/μm^2, a small leakage current of 4.8 × 10^-8 A/cm^2 at 3 V, a high breakdown electric field of 8.61 MV/cm as well as acceptable voltage coefficients of capacitance (VCCs) of 795 ppm/V2 and 268ppm/V at 1 MHz. The observed properties should be attributed to high-quality Al2O3 film and chemically stable TaN electrodes. Further, a logarithmically linear relationship between quadratic VCC and frequency is observed due to the change of relaxation time with carrier mobility in the dielectric. The conduction mechanism in the high field ranges is dominated by the Poole-Frenkel emission, and the leakage current in the low field ranges is likely to be associated with trap-assisted tunnelling. Meanwhile, the Al2O3 dielectric presents charge trapping under low voltage stresses, and defect generation under high voltage stresses, and it has a hard-breakdown performance.  相似文献   

17.
Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B203/C powder precursors under an argon flow at 1100℃. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.  相似文献   

18.
Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano~carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.  相似文献   

19.
N-type Si-based type-I clathrates with different Ga content were synthesized by combining the solid-state reaction method, melting method and spark plasma sintering (SPS) method. The effects of Ga composition on high temperature thermoelectric transport properties were investigated. The results show that at room temperature, the carrier concentration decreases, while the carrier mobility increases slightly with increasing Ga content. The Seebeck coefficient increases with increasing Ga content. Among all the samples, Ba7.93Ga17.13Si28.72 exhibits higher Seebeck coefficient than the others and reaches -135~μ V.K-1 at 1000 K. The sample prepared by this method exhibits very high electrical conductivity, and reaches 1.95× 105S.m-1 for Ba8.01Ga16.61Si28.93 at room temperature. The thermal conductivity of all samples is almost temperature independent in the temperature range of 300--1000~K, indicating the behaviour of a typical metal. The maximum {ZT} value of 0.75 is obtained at 1000~K for the compound Ba7.93Ga17.13Si28.72.  相似文献   

20.
Zeyu Zhang 《中国物理 B》2022,31(4):47305-047305
Epitaxial Mn$_{4}$N films with different thicknesses were fabricated by facing-target reactive sputtering and their anomalous Hall effect (AHE) is investigated systematically. The Hall resistivity shows a reversed magnetic hysteresis loop with the magnetic field. The magnitude of the anomalous Hall resistivity sharply decreases with decreasing temperature from 300 K to 150 K. The AHE scaling law in Mn$_{4}$N films is influenced by the temperature-dependent magnetization, carrier concentration and interfacial scattering. Different scaling laws are used to distinguish the various contributions of AHE mechanisms. The scaling exponent $\gamma > 2$ for the conventional scaling in Mn$_{4}$N films could be attributed to the residual resistivity $\rho_{xx0}$. The longitudinal conductivity $\sigma_{xx}$ falls into the dirty regime. The scaling of $\rho_{\rm AH}=\alpha \rho_{xx0} +b\rho_{xx}^{n}$ is used to separate out the temperature-independent $\rho_{xx0}$ from extrinsic contribution. Moreover, the relationship between $\rho_{\rm AH}$ and $\rho_{xx}$ is fitted by the proper scaling to clarify the contributions from extrinsic and intrinsic mechanisms of AHE, which demonstrates that the dominant mechanism of AHE in the Mn$_{4}$N films can be ascribed to the competition between skew scattering, side jump and the intrinsic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号