首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have investigated, by X-ray diffraction, a series of single crystals of Bi-based oxides with the nominal composition Bi2Sr2(Cu1-zFez)O6+δ(0≤z≤0.55). In this system we observed two structural phase transitions with the increase of the doping content. The first transition, from an incommensurate monoclinic phase to an incommensurate orthorhombic phase, occurs at a doping content of iron zFe=0.027. The second one corresponds to a phase transition from an incommensurate orthorhombic phase to a commensurate orthorhombic phase at zFe=0.34. The comparison of these results with those for more limited substitutions of Zn and Ni indicates the significant role of the insertion of the extra oxygen in the (Bi-O) double layers.  相似文献   

2.
Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.  相似文献   

3.
赵素芬  金汉民  王学凤  闫羽 《中国物理》2001,10(12):1157-1162
The demagnetization process for a Nd2Fe14B grain covered by an α-Fe layer was studied by use of the finite element technique of micromagnetics. μ0iHc decreases with the increase of α-Fe layer thickness t. With the increase of t from 0 to 6nm, μ0iHc decreases from ~7 T to ~3.5 T when the angle between the applied field and the c-axis of the Nd2Fe14B grain is 0.5° and from ~4 T to ~1.5 T when the angle is 30° or 60°. The effect is only slightly affected by the angle between the α-Fe layer and the field direction.  相似文献   

4.
The pure Cr2O3 coated Li4Ti5O12 microspheres were prepared by a facile and cheap solutionbased method with basic chromium(III) nitrate solution (pH=11.9). And their Li-storage properties were investigated as anode materials for lithium rechargeable batteries. The pure Cr2O3 works as an adhesive interface to strengthen the connections between Li4Ti5O12 particles, providing more electric conduction channels, and reduce the inter-particle resistance. Moreover, LixCr2O3, formed by the lithiation of Cr2O3, can further stabilize Li7Ti5O12 with high electric conductivity on the surface of particles. While in the acid chromium solution (pH=3.2) modification, besides Cr2O3, Li2CrO4 and TiO2 phases were also found in the final product. Li2CrO4 is toxic and the presence of TiO2 is not welcome to improve the electrochemical performance of Li4Ti5O12 microspheres. The reversible capacity of 1% Cr2O3-coated sample with the basic chromium solution modification was 180 mAh/g at 0.1 C, and 134 mAh/g at 10 C. Moreover, it was even as high as 127 mAh/g at 5 C after 600 cycles. At-20℃, its reversible specific capacity was still as high as 118 mAh/g.  相似文献   

5.
李东飞  高淑琴  孙成林  里佐威 《中国物理 B》2012,21(8):83301-083301
The effects of anti-hydrogen bond on the ν1ν12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of Fermi coupling coefficient W of the ring breathing mode ν 1 and triangle mode ν 12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the ν1ν12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the ν1ν12 FR of pyridine. According to the mechanism of the formation of anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the ν1ν12 FR of pyridine is given.  相似文献   

6.
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were systematically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.  相似文献   

7.
We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFexO3-δ (X=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (X=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (X=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.  相似文献   

8.
LiMn2O4 films have been deposited onto silicon wafer by pulsed-laser deposition (PLD) technique in order to test their reliability as cathode materials in rechargeable lithium microbatteries. The film formation has been studied as a function of the preparation conditions, i.e., composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Depending on the conditions of deposition, Mn2O3 was present as an impurity phase. When deposited onto silicon substrate maintained at 300 °C in an oxygen pressure of 100 mTorr from the target LiMn2O4+15 % Li2O, the PLD films are well-textured with crystallite size of 300 nm. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by x-ray diffraction and Raman scattering measurements. Surface morphologies of layers were investigated by SEM. The cells Li//LiMn2O4 have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the range 3.0–4.2 V. The voltage profiles show the two expected steps for LixMn2O4 with a specific capacity as high as 120 mC/cm2 μm. The chemical diffusion coefficients for the LixMn2O4 thin films appear to be in the range of 10−11-10−12 cm2/s. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

9.
A. Kaiser  E. Monreal  D. Stolten 《Ionics》1997,3(1-2):143-148
Chemical reactions and thermal expansion mismatch between electrodes and electrolyte may reduce the long term stability of SOFC-single cells and can cause undesirable thermomechanical stresses. In solid electrolyte cells the formation of MnAl2O4 was detected between the air electrode (La0.5Ca0.5MnO3) and the electrolyte (YSZ/Al2O3) in a 5 μm diffusion zone within the electrolyte. The electronically conducting spinel MnAl2O4 is thought to be the main factor for delamination of the air electrode under anodic current (electrolysis). The performance and long term stability of the air electrode/electrolyte interface can be improved for electrolysis conditions by an additional intermediate YSZ-layer made by sol-gel technique. The mismatch in thermal expansion between the electrode materials and the electrolyte have been eliminated via optimized doping and by adding small amounts of a silicate-based substituent with a very low thermal expansion co-efficient for the cathode and anode, respectively. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

10.
Anode supported thick film ceria electrolyte unit cells were fabricated using a colloidal dip coating method for IT-SOFCs. Pre-sintering temperature of the anode substrate and the final sintering temperature were found to be the primary parameters determining the density of the film. With Ni-Ce0.89Gd0.11 O2–δ cermet anode, La0.6Sr0.4Co0.2Fe0.8O3 cathode and 15 μm Ce0.89Gd0.11 O2–δ electrolyte, the cells were tested in a fuel cell configuration with air at the cathode and moist H2 at the anode. At 650 °C, the cell indicated a maximum power density of ∼0.27 W/cm2 at a current density of 0.62 A/cm2. Cell performance was compared with oxygen at the cathode and the cell indicated a maximum power density of ∼0.50 W/cm2 at 1.14 A/cm2, 650 °C. Activation energy for the area specific resistance (ASR) of the cell suggests that with air at cathode, the cell performance was limited by gaseous diffusion at cathode and with oxygen at cathode, by oxygen ion transport across the electrolyte.  相似文献   

11.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

12.
We report the synthesis of three new Yb-based compounds, Yb8Ag18.5Al47.5 (Yb8Cu17Al49-type, tetragonal tI74–I4/mmm), Yb2Pd2Cd (Mo2B2Fe-type, tetragonal tP10-P4/mbm) and Yb1.35Pd2Cd0.65 (MnCu2Al-type, cubic cF16–Fm3¯m). The crystal symmetry of these compounds has been determined and the complete structural characterisation carried out by single crystal and powder diffraction techniques. Two symmetry in-equivalent sites are available for the Yb ions in Yb8Ag18.5Al47.5 and Yb1.35Pd2Cd0.65. The 4f levels of the Yb ions are appreciably hybridised in Yb8Ag18.5Al47.5 and to a lesser extent in Yb2Pd2Cd as inferred from the magnetisation and heat capacity data. Signatures of heavy fermion behaviour are observed in the heat capacity data of Yb2Pd2Cd in which the heat capacity, C/T, increases at low temperatures attaining a value of ≈600 mJ/mol K2 at 1.8 K. The electrical resistivity of Yb2Pd2Cd follows a linear variation with temperature, T, between 1.4 and 5 K, thus indicating a possible non-Fermi liquid behaviour. In contrast, Yb ions are trivalent in Yb1.35Pd2Cd0.65 and order magnetically near 1.4 K.  相似文献   

13.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.  相似文献   

14.
Twenty-seven new cw far infrared laser lines with wavelengths between 137 and 988m have been observed from optically pumping C2H3F, C2H3Cl, C2H3Br, C2H5F, C2H3CN, CH2CF2, HCOOH and CH3Br with a CO2 laser. The wavelengths of these FIR laser lines were determined together with their optimum pressures and relative intensities.  相似文献   

15.
研究了提拉法生长的Er3+/Yb3+:Gd3Sc2Ga3O12和Er3+:Gd3Sc2Ga3O12晶体在室温下320—1700nm范围的吸收光谱和500—750nm范围内的上转换荧光谱,同时对其上转换荧光的可能发生机制、途径以及上转换过程可能对Er3+相似文献   

16.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

17.
王华  任明放 《物理学报》2007,56(12):7315-7319
采用溶胶凝胶工艺在p-Si衬底上制备了SrBi2Ta2O9/Bi4Ti3O12复合铁电薄膜. 研究了SrBi2Ta2O9/Bi4Ti3O12复合薄膜的微观结构与生长行为、铁电性能和疲劳特性. 研究表明: Si衬底Bi4Ti< 关键词: 2Ta2O9')" href="#">SrBi2Ta2O9 4Ti3O12')" href="#">Bi4Ti3O12 复合铁电薄膜 溶胶凝胶工艺  相似文献   

18.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

19.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   

20.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号