首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The GaSb-based laser shows its superiority in the 3-4 ~tm wavelength range. However, for a quantum well (QW) laser structure of InGaAsSb/AIGaInAsSb multiple-quantum well (MQW) grown on GaSb, uniform content and high com- pressive strain in InGaAsSb/A1GaInAsSb are not easy to control. In this paper, the influences of the growth tempera- ture and compressive strain on the photoluminescence (PL) property of a 3.0μm lnGaAsSb/A1GaInAsSb MQW sample are analyzed to optimize the growth parameters. Comparisons among the PL spectra of the samples indicate that the Ino.485GaAso.184Sb/Alo.3Gao.45Ino.25Aso.22Sbo.78 MQW with 1.72% compressive strain grown at 460 ~C posseses the op- timum optical property. Moreover, the wavelength range of the MQW structure is extended to 3.83 μm by optimizing the parameters.  相似文献   

2.
We investigate the properties of symmetrical triangular quantum wells composed of InGaAs/InAs chirped superlattice, which is grown by gas source molecular beam epitaxy via digital alloy method. In the quantum well structure tensile AlInGaAs are used as barriers to partially compensate for the significant compressive strain in the wells, the strain compensation effects are confirmed by x-ray measurement. The photoluminescence spectra of the sample are dominated by the excitonic recombination peak in the whole temperature range. The thermal quenching, peak energy shift and line-width broadening of the PL spectra are analysed in detail, the mechanisms are discussed.  相似文献   

3.
We present a method to extend the operating wavelength of the interband transition quantum well photodetector from an extended short-wavelength infrared region to a middle-wavelength infrared region. In the modified In As Sb quantum well, Ga Sb is replaced with Al Sb/Al Ga Sb, the valence band of the barrier material is lowered, the first restricted energy level is higher than the valence band of the barrier material, the energy band structure forms type-II structure. The photocurrent spectrum manifest that the fabricated photodetector exhibits a response range from 1.9 μm to 3.2 μm with two peaks at 2.18 μm and 3.03 μm at 78 K.  相似文献   

4.
汪明  谷永先  季海铭  杨涛  王占国 《中国物理 B》2011,20(7):77301-077301
We investigate the band structure of a compressively strained In(Ga)As/In 0.53 Ga 0.47 As quantum well (QW) on an InP substrate using the eight-band k · p theory.Aiming at the emission wavelength around 2.33 μm,we discuss the influences of temperature,strain and well width on the band structure and on the emission wavelength of the QW.The wavelength increases with the increase of temperature,strain and well width.Furthermore,we design an InAs /In 0.53 Ga 0.47 As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.  相似文献   

5.
In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers.  相似文献   

6.
Tunable diode laser absorption spectroscopy detection of N2 0 around 2.1 μm is demonstrated by using a homemade InGaAsSb/AlGaAsSb MQW laser diode and an InGaAs wavelength extended photodiode. Details of the devices and the detection system are described. In the system, the laser is driven by low frequency pulses with long duration to form a wavelength scan around 4741 cm^-1; the absorption information is obtained from the detected signal of the photodiode. By using a gas cell with 15cm path length, a detection limit is estimated to be smaller than 0.2 Torr.  相似文献   

7.
赵一  张进成  薛军帅  周小伟  许晟瑞  郝跃 《中国物理 B》2015,24(1):17302-017302
In order to investigate the influence of compressive strain on indium incorporation in In Al N and In Ga N ternary nitrides,In Al N/Ga N heterostructures and In Ga N films were grown by metal–organic chemical vapor deposition.For the heterostructures,different compressive strains are produced by Ga N buffer layers grown on unpatterned and patterned sapphire substrates thanks to the distinct growth mode;while for the In Ga N films,compressive strains are changed by employing Al Ga N templates with different aluminum compositions.By various characterization methods,we find that the compressive strain will hamper the indium incorporation in both In Al N and In Ga N.Furthermore,compressive strain is conducive to suppress the non-uniform distribution of indium in In Ga N ternary alloys.  相似文献   

8.
High-strain InGaAs/GaAs quantum wells (QWs) are grown by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). Photoluminescence (PL) at room temperature is applied for evaluation of the optical property. The influence of growth temperature, V/III ratio, and growth rate on PL characteristic are investigated. It is found that the growth temperature and V/III ratio have strong effects on the peak wavelength and PL intensity. The full-width at half-maximum (FWHM) of PL peak increases with higher growth rate of InGaAs layer. The FWHM of the PL peak located at 1039 nm is 20.1 meV, which grows at 600 ℃ with V/ III ratio of 42.7 and growth rate of 0.96 μm/h.  相似文献   

9.
We report on a quantum dot quantum cascade detector(QD-QCD), whose structure is derived from a QD cascade laser. In this structure, more ordered In As QD layers formed in the Stranski–Krastanow growth mode on a thin Ga As buffer layer are incorporated into the active region. This QD-QCD can operate up to room temperature with a peak detection wavelength of 5.8 μm. A responsivity of 3.1 mA/W at 160 K and a detectivity of 3.6 × 10~8 Jones at 77 K are obtained. The initial performance of the detector is promising, and, by further optimizing the growth of InA s QDs, integrated QD-quantum cascade laser/QCD applications are expected.  相似文献   

10.
Long-wavelength Ga2N based light-emitting diodes are of importance in full color displays, monofithic white lightemitting diodes and solid-state lighting, etc. However, their epitaxial growth faces great challenges because high indium (In) compositions of lnGaN are difficult to grow. In order to enhance In incorporation and lengthen the emission wavelength of a InGaN/GaN multi-quantum well (MQW), we insert an InGaN underlying layer underneath the MQW. InGaN/GaN MQWs with various InGaN underlying layers, such as graded InyGal-yN material with linearly increasing In content, or InyGa1-yN with fixed In content but different thicknesses, are grown by metal-organic chemical vapor deposition. Experimental results demonstrate the enhancement of In incorporation and the emission wavelength redshift by the insertion of an InGaN underlying layer.  相似文献   

11.
A four-wavelength Bragg reflection waveguide edge emitting diode based on intracavity spontaneous parametric down-conversion and four-wave mixing(FWM) processes is made. The structure and its tuning characteristic are designed by the aid of FDTD mode solution. The laser structure is grown by molecular beam epitaxy and processed to laser diode through the semiconductor manufacturing technology. Fourier transform infrared spectroscopy is applied to record wavelength information. Pump around 1.071 μm, signal around 1.77μm, idler around 2.71 μm and FWM signal around 1.35 μm are observed at an injection current of 560 mA. The influences of temperature, carrier density and pump wavelength on tuning characteristic are shown numerically and experimentally.  相似文献   

12.
A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 μm at room temperature, and the density of the QDs is in the range of 4× 10^9-8 ×10^9cm^-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoeleetronic and quantum functional devices.  相似文献   

13.
Optical properties of highly strained GaInAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy with Sb assistance are investigated. The samples grown by Sb incorporation and Sb pre-deposition methods display high room-temperature photoluminescence (PL) intensity at extended 10ng wavelength. This result is explained by the surfactant effects of Sb during the growth of GaInAs/GaAs QW systems. An abnormal Sshaped temperature dependence of the PL peak position is found in the In0.42Ga0.58As/GaAs triple QWs sample grown with Sb pre-deposition. By investigating the transmission electron microscope images and time-resolved PL spectra, it is found that the S-shaped temperature dependence of the PL peak position originates from the exciton 10calization effect brought by the Sb-rich clusters on the QW interface.  相似文献   

14.
A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.  相似文献   

15.
GaSb-based 2.4μm InGaAsSb/AIGaAsSb type-I quantum-well laser diode is fabricated. The laser is designed consisting of three In0.35 Ga0.65As0.1Sb0.9/Al0.35 Ga0.65 As0.02Sb0.98 quantum wells with 1% compressive strain located in the central part of an undoped Al0.35Ga0.65As0.02Sb0.98 waveguide layer. The output power of the laser with a 50-μm-wide i-ram-long cavity is 28roW, and the threshold current density is 400A/cm2 under continuous wave operation mode at room temperature.  相似文献   

16.
A series of metamorphic high electron mobility transistors (MMHEMTs) with different Ⅴ/Ⅲ flux ratios are grown on CaAs (001) substrates by molecular beam epitaxy (MBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum Ⅴ/Ⅲ ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm^2/(V.s) and 3.26×10^12cm^-2 respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the Ⅴ/Ⅲ ratio, for which the reasons are discussed.  相似文献   

17.
We fabricate a Ga As-based In Ga As/In Ga As P multiple quantum wells(MQWs) laser at 1.55 μm. Using two-step growth method and thermal cyclic annealing, a thin low-temperature In P layer and a thick In P buffer layer are grown on Ga As substrates by low-pressure metal organic chemical vapor deposition technology. Then, highquality MQWs laser structures are grown on the In P buffer layer. Under quasi-continuous wave(QCW) condition, a threshold current of 476 m A and slope efficiency of 0.15 m W/m A are achieved for a broad area device with 50 μm wide strip and 500 μm long cavity at room-temperature. The peak wavelength of emission spectrum is1549.5 nm at 700 m A. The device is operating for more than 2000 h at room-temperature and 600 mA.  相似文献   

18.
We propose an optically pumped nonpolar GaN/AlGaN quantum well(QW) active region design for terahertz(THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature.The fast longitudinal optical(LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state,and more importantly,the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures.The influences of temperature and pump intensity on gain and electron densities are investigated.Based on our simulations,we predict that with a sufficiently high pump intensity,a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.  相似文献   

19.
傅爱兵  郝明瑞  杨耀  沈文忠  刘惠春 《中国物理 B》2013,22(2):26803-026803
We propose an optically pumped nonpolar GaN/AlGaN quantum well (QW) active region design for terahertz (THz) lasing in the wavelength range of 30 μm~ 40 μm and operating at room temperature. The fast longitudinal optical (LO) phonon scattering in GaN/AlGaN QWs is used to depopulate the lower laser state, and more importantly, the large LO phonon energy is utilized to reduce the thermal population of the lasing states at high temperatures. The influences of temperature and pump intensity on gain and electron densities are investigated. Based on our simulations, we predict that with a sufficiently high pump intensity, a room temperature operated THz laser using a nonpolar GaN/AlGaN structure is realizable.  相似文献   

20.
The influences of stress on the properties of In GaN/GaN multiple quantum wells(MQWs) grown on silicon substrate were investigated.The different stresses were induced by growing In GaN and Al GaN insertion layers(IL) respectively before the growth of MQWs in metal–organic chemical vapor deposition(MOCVD) system.High resolution x-ray diffraction(HRXRD) and photoluminescence(PL) measurements demonstrated that the In GaN IL introduced an additional tensile stress in n-GaN,which released the strain in MQWs.It is helpful to increase the indium incorporation in MQWs.In comparison with MQWs without the IL,the wavelength shows a red-shift.Al GaN IL introduced a compressive stress to compensate the tensile stress,which reduces the indium composition in MQWs.PL measurement shows a blue-shift of wavelength.The two kinds of ILs were adopted to In GaN/GaN MQWs LED structures.The same wavelength shifts were also observed in the electroluminescence(EL) measurements of the LEDs.Improved indium homogeneity with In GaN IL,and phase separation with Al GaN IL were observed in the light images of the LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号