首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨周  许小亮  公茂刚  刘玲  刘艳松 《中国物理 B》2010,19(12):126103-126103
This paper reports that the film composed of flower-like ZnO micro-spheres, which consists of nano-sheets, is fabricated by chemical bath deposition. By adding hydrogen fluoride (HF) into the reaction solution, which contains zinc nitrate hexahydrate and hexamethylenetetramine, the ZnO crystal growth process is changed and the film composed by ZnO micro-spheres is obtained after keeping the reaction solution at 95 oC for 2 h. The morphology, crystal phase and wettability of the sample are characterized by scanning electron microscope, x-ray diffraction and contact angle meter, respectively. The results show that the film has the micro-nano compound structure. After modification with heptadecafluorodecyltrimethoxy-silane, the wettability of the film changed from superhydrophilicity to superhydrophobicity, on which water contact angle and the sliding angle are 154o and less than 5o for 8-μL water droplet, respectively. Additionally, the formation mechanism of the ZnO micro-sphere is also discussed.  相似文献   

2.
Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4V/μm (about 2.5V/μm for the undoped ZnO films) is obtained at an emission current density of 1μA/cm2 and the stable current density reaches 1mA/cm2 at an applied field of about 2.1V/μm. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.  相似文献   

3.
To study the ferroelectric photovoltaic effect based on polycrystalline films,preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential.Polycrystalline Bi Fe O3(BFO)thin films with extremely large remnant polarization(2Pr=180μC/cm2)were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method.Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response.All examined cells showed polarization-induced photovoltaic effect.Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.  相似文献   

4.
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3′, 7′-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV) bulk heterojunction photovoltaic cells. Photoluminescence quenching experimental results indicate that the ultrafast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity a bout 1.2 e V greater than that of MDMO-PP V. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electrolumi- nescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.  相似文献   

5.
We report the fabrication of an MoS_2 black phosphorus(BP) composite saturable absorber by liquid phase exfoliation and the spin-coating method and further exploitation to build a 2 μm passively Q-switched Tm:YAP laser. Such a composite based Q-switched laser with a duration of 488 ns and corresponding peak power of 85.9 W is obtained, which shows an improved saturable absorption effect than that of single MoS_2(616 ns,68.7 W) and BP(932 ns, 22.4 W). The results indicate that simple and reasonable fabrication of the vertical composite from two-dimensional atomic layer materials opens up the possibility to create an unprecedented saturable absorber with exciting properties.  相似文献   

6.
We report the fast lateral photovoltaic effect in pure congruent LiNbO3 crystal induced by pulsed laser and continuous wave laser with wavelengths of 355, 532, and 1064 nm. A typical ultrafast photovoltage can be observed on the surface perpendicular to the c axis, With the rise time of 1.5 ns and the full-width at half-maximum of 1-2 ns, when the laser pulse inhomogeneously irradiates on the crystal. The peak open-circuit photovoltages show a linear dependence on the incident laser intensities. The mechanism of the photovoltaic characteristics is proposed.  相似文献   

7.
We present an ultrasonic method for determining the thickness of a composite consisting of a soft thin film attached to a hard plate substrate, by resonance spectra in the low frequency region, The interrogating waves can be incident only to the two-layered composite from the substrate side. The reflection spectra are obtained by FFT analysis of the compressive pulsed echoes from the composite, and the thicknesses of the film and the substrate are simultaneously inversed by the simulated annealing method from the resonant frequencies knowing other acoustical parameters in prior. The sensitivity of the method to individual thickness, its convergence and stability against experimental noises are studied, Experiment with interrogating wavelength 4 times larger than the film thickness in a sample of a polymer film (0.054mm) on an aluminium plate (6.24mm) verifies the validity of the method. The average relative errors in the measurement of the thicknesses of the film and the substrate are found to be -4.1% and -0.62%, respectively.  相似文献   

8.
Ultrathin optical interference in a system composed of absorbing material and metal reflector has attracted extensive attention due to its potential application in realizing highly efficient optical absorption by using extremely thin semiconductor material. In this paper, we study the physics behind the high absorption of ultrathin film from the viewpoint of destructive interference and admittance matching, particularly addressing the phase evolution by light propagation and interface reflection. The physical manipulations of the ultrathin interference effect by controlling the substrate material and semiconductor material/thickness are examined. We introduce typical two-dimensional materials — i.e., MoS_2 and WSe_2— as the absorbing layer with thickness below 10 nm, which exhibits ~ 90% absorption in a large range of incident angle(0°~70°). According to the ultrathin interference mechanism, we propose the ultrathin( 20 nm) MoS_2/WSe_2 heterojunction for photovoltaic application and carefully examine the detailed optoelectronic responses by coupled multiphysics simulation. By comparing the same cells on SiO_2 substrate, both the short-circuit current density(up to 20 mA/cm~2) and the photoelectric conversion efficiency(up to 9.5%) are found to be increased by ~200%.  相似文献   

9.
Nanocrystalline Cu film with a mirror surface finishing is prepared by the electric brush-plating technique. The as- prepared Cu film exhibits a superhydrophilic behavior with an apparent water contact angle smaller than 10°. A subsequent increase in the water contact angle and a final wetting transition from inherent hydrophilicity with water contact angle smaller than 90° to apparent hydrophobicity with water contact angle larger than 90° are observed when the Cu film is subjected to natural aging. Analysis based on the measurement of hardness with nanoindentation and the theory of the bond-order-length-strength correlation reveals that this wetting variation on the Cu film is attributed to the relaxation of residual stress generated during brush-plating deposition and a surface hydrophobization role associated with the broken bond polarization induced by surface nanostructure.  相似文献   

10.
公茂刚  许小亮  杨周  刘艳松  刘玲 《中国物理 B》2010,19(5):56701-056701
ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50~${^\circ}$C was converted from superhydrophilic with a water contact angle lower than 5$^{\circ}$ to superhydrophobic with a water contact angle of 165$^{\circ}$. Additionally, the surface of reticulate papillary nodes ZnO film grown at 100~${^\circ}$C had excellent superhydrophobicity, with a water contact angle of 173$^{\circ}$ and a sliding angle lower than 2$^{\circ}$. Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150~${^\circ}$C and 200~${^\circ}$C were found to be 140$^{\circ}$ and 120$^{\circ}$, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.  相似文献   

11.
The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45o with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.  相似文献   

12.
To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency, a powerful strategy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained. Annealing effect improved the photovoltaic performance of ITO/CP-PV/Al Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.  相似文献   

13.
We investigate the effect of a metallic electrode on the ability for poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4phenylene vinylene](MEH-PPV) film to undergo amplified spontaneous emission(ASE).The threshold of the device with Ag cladding is about 10 times greater than that of a metal-free device,but metal such as Al completely shuts off ASE.The ASE recurs when a thin spacer layer,such as a few nanometers of SiO 2,is introduced between the MEH-PPV film and the Al cladding.Compared with the Cu or Al electrode,the Ag cladding is most suited to serve as an electrode with its low optical loss due to its high work-function and reflectivity.  相似文献   

14.
Thin film solar cells have the potential to significantly reduce the cost of photovoltaics. Light trapping is crucial to such a thin film silicon solar cell because of a low absorption coefficient due to its indirect band gap. In this paper, we investigate the suitability of surface plasmon resonance Ag nanoparticles for enhancing optical absorption in the thin film solar cell. For evaluating the transmittance capability of Ag nanoparticles and the conventional antireflection film, an enhanced transmittance factor is introduced. We find that under the solar spectrum AM1.5, the transmittance of Ag nanoparticles with radius over 160 nm is equivalent to that of conventional textured antireflection film, and its effect is better than that of the planar antireflection film. The influence of the surrounding medium is also discussed.  相似文献   

15.
ZnO thin films doped with different Cu concentrations are fabricated by reactive magnetron sputtering technique. XRD analysis indicates that the crystal quality of the ZnO:Cu film can be enhanced by a moderate level of Cu-doping in the sputtering process. The results of XPS spectra of zinc, oxygen, and copper elements show that Cu-doping has an evident and complicated effect on the chemical state of oxygen, but little effect on those of zinc and copper. Interestingly, further investigation of the optical properties of ZnO:Cu samples shows that the transmittance spectra exhibit both red shift and blue shift with the increase of Cu doping, in contrast to the simple monotonic behavior of the Burstein–Moss effect. Analysis reveals that this is due to the competition between oxygen vacancies and intrinsic and surface states of oxygen in the sample. Our result may suggest an effective way of tuning the bandgap of ZnO samples.  相似文献   

16.
A new design is presented to improve the magnetic recording density in all-optical magnetic storage. By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy. Magnetization of the film is induced by the inverse Faraday effect. As the obstructed angle of the filter increases the magnetic recording density increases evidently. The magnetization intensity and the sidelobe effect are also discussed.  相似文献   

17.
The Sb_6Te_4/VO_2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb_6Te_4, Sb_6Te_4/VO_2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb_6Te_4/VO_2 has a broader energy band of 1.58 eV and better data retention(125℃ for 10 y). The crystallization is suppressed by the multilayer interfaces in Sb_6Te_4/VO_2 thin film with a smaller rms surface roughness for Sb_6Te_4/VO_2 than monolayer Sb_4Te_6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb_6Te_4(2 nm)/VO_2(8 nm)thin film. The Sb_6Te_4/VO_2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.  相似文献   

18.
ZnO/graphene/polyaniline(PANI) composite is synthesized and used for photoelectrocatalytic oxidation of methane under simulated sun light illumination with ambient conditions. The photoelectrochemical(PEC) performance of pure ZnO, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI photoanodes is investigated by cyclic voltammetry(CV),chronoamerometry(J–t) and electrochemical impedance spectroscopy(EIS). The yields of methane oxidation products,mainly methanol(CH_3OH) and formic acid(HCOOH), catalysed by the synthesized ZnO/graphene/PANI composite are 2.76 and 3.20 times those of pure ZnO, respectively. The mechanism of the photoelectrocatalytic process converting methane into methanol and formic acid is proposed on the basis of the experimental results. The enhanced photoelectrocatalytic activity of the ZnO/graphene/PANI composite can be attributed to the fact that graphene can efficiently transfer photo-generated electrons from the inner region to the surface reaction to form free radicals due to its superior electrical conductivity as an inter-media layer. Meanwhile, the introduction of PANI promotes solar energy harvesting by extending the visible light absorption and enhances charge separation efficiency due to its conducting polymer characteristics.In addition, the PANI can create a favorable π-conjunction structure together with graphene layers, which can achieve a more effective charge separation. This research demonstrates that the fabricated ZnO/graphene/PANI composite promises to implement the visible-light photoelectrocatalytic methane oxidation.  相似文献   

19.
陈尚辉  陈建  邓少芝  许宁生 《中国物理 B》2010,19(3):37803-037803
Nanodevices using the photovoltaic effect of a single nanowire have attracted growing interest. In this paper, we consider potential applications of the photovoltaic effect to optical signal coupling and optical power transmission, and report on the realization of a heterojunction formed between WO2 and WO3 in a fine-wire having a diameter on the micrometer scale. Using a laser beam of 514.5~nm as a signal source, the WO2--WO3 heterojunction yields a maximum output power of up to 37.4 pico watt per heterojunction. Fast responses (less than a second) of both photovoltaic voltage and current are also observed. In addition, we demonstrate that it is a simple and effective way to adapt a commercial Raman spectrometer for the combined functions of fabrication, material characterization and photovoltaic measurement of an optical signal coupler and optical power transmitter based on a fine-wire. Our results show an attractive perspective of developing nanowire or fine-wire elements for coupling optical signals into and for powering a nanoelectronic or nano-optoelectronic integrated circuit that works under the condition of preventing it from directly electrically connecting with the optical coupler.  相似文献   

20.
Alternative Ag and SiO2 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag—SiO2 composite film via a rapid thermal treatment. Different shapes of the Ag particles are obtained by changing the thickness of each Ag and SiO2 layer. The response absorption property of the Ag composite film is also investigated. We relate the resonance absorption to the surface level and the Fermi level. To induce the obvious resonance absorption in an Ag composite film, it is necessary to maintain special shapes with sharp edges and wide terraces and to maintain the particle sizes ranging from 0 nm to 100 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号