首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
亲水性微观粗糙表面润湿状态转变性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘思思  张朝辉  何建国  周杰  尹恒洋 《物理学报》2013,62(20):206201-206201
以亲水性微观粗糙表面上不同几何形貌及分布的微柱阵列为对象, 讨论了液滴在亲水性粗糙表面上的润湿过程以及润湿状态的转变阶段. 从能量角度分别考察了微观粗糙结构几何形貌及分布、微柱几何参数、固体表面亲水性、接触角滞后作用等因素对液滴润湿状态转变的影响规律. 研究发现: 在亲水粗糙表面, 正方形微柱呈正六边形阵列分布时, 液滴更容易形成稳定的Cassie状态, 或者液滴仅发生Cassie状态向中间浸润状态的转变; 与此同时, 减小微柱间距、增大方柱宽度或圆柱直径、增大微柱高度、增强固体表面的亲水性将有利于液滴处于稳定的Cassie状态, 或阻止润湿状态向伪-Wenzel或Wenzel状态转变; 然而, 当液滴处于Cassie状态时, 较小的固-液界面面积分数或减弱固体表面亲水性能均有利于增大液滴的表观接触角, 因此在亲水表面设计粗糙结构时应综合考虑润湿状态稳定性和较大表观接触角两方面因素; 此外, 接触角滞后作用对于液滴状态的稳定性以及疏水性能的实现具有相反作用的影响. 研究结果为液滴在亲水表面获得稳定Cassie状态的粗糙结构设计方法提供了理论依据. 关键词: 亲水表面 微观粗糙结构 表面自由能 润湿状态转变  相似文献   

2.
建立三维倾斜平板降膜模型,利用VOF两相流模型计算了液氧降膜的润湿情况,研究了工质物性、倾斜角、液膜入口高度对润湿面积的影响。结果表明:Weber数(We)相同时,液氧和水的润湿比均随Kapitza数(Ka)增大而减小;相同Ka下,液氧和水的润湿比均随We增大而增大,而液氧润湿比一直小于水润湿比,两者的差值也随We增大而增大。拟合得到液氧在液膜入口高度0.4 mm、接触角70°时的界面润湿比经验关联式,拟合值和模拟值相对误差≤±20%;在We=0.76时,液氧的润湿比随倾斜角增大而减小,但降低速率随Ka增大而减小;在倾斜角为90°时,易出现液膜脱离壁面的现象;当We固定时,液氧的润湿比随液膜入口高度增大而增大。  相似文献   

3.
ZnO is an important material that is used in a variety of technologies including optical devices, sensors, and other microsystems. In many of these technologies, wettability is of great concern because of its implications in numerous surface related interactions. In this work, the effects of surface morphology and surface energy on the wetting characteristics of ZnO were investigated. ZnO specimens were prepared in both smooth film and nanowire structure in order to investigate the effects of surface morphology. Also, a hydrophobic octadecyltrichlorosilane (OTS) coating was used to chemically modify the surface energy of the ZnO surface. Wettability of the surfaces was assessed by measuring the water contact angle. The results showed that the water contact angle varied significantly with surface morphology as well as surface energy. OTS coated ZnO nanowire specimen had the highest contact angle of 150°, which corresponded to a superhydrophobic surface. This was a drastic difference from the contact angle of 87° obtained for the smooth ZnO film specimen. In addition to the initial contact angle, the evolution of the water droplet with respect to time was investigated. The wetting state of water droplet was analyzed with both Wenzel and Cassie-Baxter models. Spontaneous and gradual spreading, together with evaporation phenomenon contributed to the changing shape, and hence the varying contact angle, of the water droplet over time.  相似文献   

4.
Multiply-alkylated cyclopentanes (MACs) composite thin films containing Cu nanoparticles are fabricated on the octadecyltrichlorosilane (OTS)-modified substrate by a spin-coating technique. The thickness, wetting behavior, and nanoscale morphologies of the films are characterized by means of ellipsometry, contact angle measurement, and atomic force microscope (AFM). The friction and wear behaviors of the thin films sliding against Si3N4 ball are examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the OTS-MAC-Cu composite film and the counterpart Si3N4 balls are investigated with a scanning electron microscope. Water contact angle on OTS-MAC-Cu composite film is higher than that of OTS-MAC film. OTS-MAC-Cu composite film exhibits higher load-carrying capacity and better friction reduction and antiwear behavior as compared with OTS-MAC film. This may be attributed to the load-carrying and self-repairing property of the Cu nanoparticles in the composite film and the formation of a transfer layer composed of OTS, MAC, and Cu on the rubbing surface of the counterpart ball.  相似文献   

5.
徐威  兰忠  彭本利  温荣福  马学虎 《物理学报》2015,64(21):216801-216801
微小液滴在不同能量表面上的润湿状态对于准确预测非均相核化速率和揭示界面效应影响液滴增长微观机理具有重要意义. 通过分子动力学模拟, 研究了纳米级液滴在不同能量表面上的铺展过程和润湿形态. 结果表明, 固液界面自由能随固液作用强度增加而增加, 并呈现不同液滴铺展速率和润湿特性. 固液作用强度小于1.6的低能表面呈现疏水特征, 继续增强固液作用强度时表面变为亲水, 而固液作用强度大于3.5的高能表面上液体呈完全润湿特征. 受微尺度条件下非连续、非对称作用力影响, 微液滴气液界面存在明显波动, 呈现与宏观液滴不同的界面特征. 统计意义下, 微小液滴在不同能量表面上铺展后仍可以形成特定接触角, 该接触角随固液作用强度增加而线性减小, 模拟结果与经典润湿理论计算获得的结果呈现相似变化趋势. 模拟结果从分子尺度为核化理论中的毛细假设提供了理论支持, 揭示了液滴气液界面和接触角的波动现象, 为核化速率理论预测结果和实验测定结果之间的差异提供了定性解释.  相似文献   

6.
基于Wenzel模型的粗糙界面异质形核分析   总被引:1,自引:0,他引:1       下载免费PDF全文
郑浩勇  王猛  王修星  黄卫东 《物理学报》2011,60(6):66402-066402
异质形核是形核发生的主要形式. 经典形核理论对基底界面作了理想化平面假设,然而实际异质形核体系中理想平直的固体界面是不存在的,这导致了异质形核描述与实际情况的偏差. 考察了固相晶胚在非平整界面上的异质形核过程,基于Wenzel润湿模型,分析了非理想界面的粗糙度因子对固相晶胚形核功的影响规律. 结果表明:当基底与晶核之间的本征润湿角小于90°时,基底界面越粗糙越有利于形核;本征润湿角大于90°时,基底界面越粗糙越不利于形核. 同时,游离晶胚在基底上润湿是球冠晶胚形成的重要途径,粗糙界面润湿过程中界面自由能的 关键词: 异质形核 粗糙界面 Wenzel模型 润湿过程  相似文献   

7.
The microscopic wetting of water on amorphous silica surfaces has been investigated by molecular dynamics simulation. Different degrees of surface hydroxylation/silanization were considered. It was observed that the hydrophobicity becomes enhanced with an increase in the degree of surface silanization. A continuous transformation from hydrophilicity to hydrophobicity can be attained for the amorphous silica surfaces through surface modification. From the simulation result, the contact angle can exceed 90° when surface silanization percentage is above 50%, showing a hydrophobic character. It is also found that when the percentage of surface silanization is above 70% on the amorphous silica surface, the water contact angle almost remains unchanged (110–120°). This phenomenon is a little different from the wetting behavior on smooth quartz plates in previous experimental report. This change in the wettability on modified amorphous silica surfaces can be interpreted in terms of the interaction between water molecules and the silica surfaces.  相似文献   

8.
Low surface energy polymer thin-films can be applied to surfaces to increase hydrophobicity and reduce friction for a variety of applications. However, wear of these thin films, resulting from repetitive rubbing against another surface, is of great concern. In this study, we show that highly hydrophobic surfaces with persistent abrasion resistance can be fabricated by depositing fluorinated carbon thin films on sandblasted glass surfaces. In our study, fluorinated carbon thin films were deposited on sandblasted and as-received smooth glass using deep reactive ion etching equipment by only activating the passivation step. The surfaces of the samples were then rubbed with FibrMet abrasive papers in a reciprocating motion using an automatic friction abrasion analyzer. During the rubbing, the static and kinetic friction forces were also measured. The surface wetting properties were then characterized using a video-based contact angle measuring system to determine the changes in water contact angle as a result of rubbing. Assessment of the wear properties of the thin films was based on the changes in the water contact angles of the coated surfaces after repetitive rubbing. It was found that, for sandblasted glass coated with fluorinated carbon film, the water contact angle remained constant throughout the entire rubbing process, contrary to the smooth glass coated with fluorinated carbon film which showed a drastic decrease in water contact angle with the increasing number of rubbing cycles. In addition, the static and kinetic friction coefficients of the sandblasted glass were also much lower than those of the smooth glass.  相似文献   

9.
微矩形凹槽表面液滴各向异性浸润行为的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
受自然界启发,仿生微结构被广泛用于调控固-液界面的性质.研究显示,液滴在微结构表面的各向异性浸润行为可用于实现微流动方向和速度的控制,且其各向异性浸润与微结构的尺寸和分布等密切相关.本文研究了微矩形凹槽尺寸对液滴各向异性浸润行为的影响规律.结果显示,液滴沿平行沟槽的方向具有较小的运动阻力、易铺展,因此具有较小接触角;而垂直于沟槽方向,由于沟槽的阻隔作用具有较大运动阻力,因而具有较大接触角,并且在垂直方向液滴的浸润过程是三相线一系列钉扎和跳跃行为.在微矩形凹槽表面,液滴沿平行方向接触角θ//与肋板宽度R和凹槽宽度G密切相关,其值与表面固体面积比成反比;而垂直于沟槽方向的接触角θ⊥随肋板宽度R和凹槽宽度G变化基本保持不变.同时各向异性液滴的变形比L/W、特征方向接触角比值θ⊥/θ//与表面固体面积比成正比.研究结果有助于加深理解微结构表面浸润行为的机制,并为微矩形凹槽在微流动控制方向的应用提供技术支持.  相似文献   

10.
吴兵兵  吴化平  张征  董晨晨  柴国钟 《物理学报》2015,64(17):176801-176801
自然界中的微纳复合结构超疏水表面由于其独特的润湿性质引起了人们的广泛关注, 大量实验研究表明了仿生人工微纳复合结构表面润湿性能的优越性, 然而液滴在微纳复合结构表面的润湿状态和转型过程的理论研究还并不完善. 本文首先用热力学方法分析了液滴在微纳复合结构表面可能存在的所有状态(四种稳定润湿状态和五种亚稳态到稳定态转型中的过渡态), 推导出了相应的能量表达式及表观接触角方程; 基于最小能量原理, 确定液滴在微纳复合结构表面的稳定状态, 较以往模型相比, 能够更好的预测已有的实验结果; 其次研究了微纳结构尺寸对稳定润湿状态和亚稳态到稳定态转型过程的影响; 最后提出了微纳复合结构表面设计原则, 即确定“超疏水稳定区”尺寸范围, 为超疏水表面的制备提供理论依据.  相似文献   

11.
The factors influencing the state and wetting transition of droplets on a rough surface are both complex and obscure. The change in wetting is directly reflected by changes under the contact condition of the droplets with the surface. The recent study about the wettability of the superhydrophobic surface under the condensing condition arouses the new understanding about the apparent state of droplets on a rough surface. In this work, to validate the existence of droplets in an intermediate state, a microscale pillar topological polydimethylsiloxane (PDMS) surface was manufactured and its wettability under various conditions was studied. According to the experimental data, it is proposed that the wetting state of a rough surface may be embodied using the contact area ratio of a solid/liquid/gas droplet with the projective plane. A general calculation model for the apparent contact angle of droplets is given and expressed diagrammatically. It is found that the measured apparent contact angles of droplets at different states on the surface falls within the range predicted by our proposed equation. Supported by the National Natural Science Foundation of China (Grant No. 50606025)  相似文献   

12.
A superhydrophobic surface originated from quincunx-shape composite particles was obtained by utilizing the encapsulation and graft of silica particles to control the surface chemistry and morphology of the hybrid film. The composite particles make the surface of film form a composite interface with irregular binary structure to trap air between the substrate surface and the liquid droplets which plays an essential role in obtaining high water contact angle and low water contact angle hysteresis. The water contact angle on the hybrid film is determined to be 154 ± 2° and the contact angle hysteresis is less than 5°. This is expected to be a simple and practical method for preparing self-cleaning hydrophobic surfaces on large area.  相似文献   

13.
流体液滴在固体表面的浸润性对其润滑性能至关重要.本文利用分子动力学方法研究了正癸烷纳米液滴在铜表面上的润湿特性.结果表明:在平坦光滑表面上,壁面的厚度和分子数目对润湿效果影响不大.随着壁面能量势阱参数εs 增大,接触角线性减小.随着温度升高,液滴的接触角减小.在沟槽粗糙表面上,随着粗糙度因子增大,对于疏液表面,接触角增大到一定值后基本保持不变,符合Cassie理论;中性和亲液表面接触角则会减小,为Wenzel润湿模式.当表面分数增大时,疏液与亲液表面接触角整体呈减小的趋势,对中性表面影响不大.当温度升高时,粗糙疏液表面接触角会增大,润湿效果更差,而粗糙中性和亲液表面液滴润湿性会更好.  相似文献   

14.
Dendritic copper film with convertible extreme wettability is prepared on metal surface via electrodeposition. With field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemical measurement, the morphology, composition and formation mechanism of dendritic copper film were studied. It is found that the film is mainly composed of metallic copper. Also some residual cuprous oxide and chloride exist in the deposit. The single micron-sized dendrite consists of a main stem with side branches, on which the higher-order branches with the dimension of tens of nanometers grow. A hydrophobic modification can induce the conversion of the apparent wettability of film from super-hydrophilicity (with apparent water contact angle of 5 ± 3°) to super-hydrophobicity (with apparent water contact angle of 154.1 ± 3°), which is due to the capillary effect. The method proposed in this paper is time-saving and facile to operate, and it offers a promising technique to prepare metallic surface with a high wettability contrast for water.  相似文献   

15.
液态镓在石墨烯表面的润湿性及形貌特征   总被引:1,自引:0,他引:1       下载免费PDF全文
王俊珺  李涛  李雄鹰  李辉 《物理学报》2018,67(14):149601-149601
液态Ga及其合金的熔点低、毒副作用小、导电率高,使得这类液态金属能像石墨烯一样被广泛应用于微流器件、柔性电子器件中,制备这些器件的关键在于有效控制各生产环节中液态金属在固体界面上的润湿性及形貌特征.基于Lennard-Jones(L-J)势函数,利用分子动力学模拟方法研究了金属Ga在石墨烯表面的润湿性,根据模拟结果拟合的L-J势参数能正确描述Ga原子与衬底之间的相互作用并得到了与实验值极为接近的润湿角,发现衬底与液膜间相互作用的微小改变都会对最终润湿形态产生极大影响,平衡态的润湿角和脱离衬底速度随着Ga-C间势能的减小而增大,并成功获得了不同厚度的Ga液膜在石墨烯表面的形态演变规律,极为符合液态Ga的基本特性.利用所得L-J势函数参数模拟了液态Ga在粗糙度相同但纳米柱尖端形貌不同的C材料表面的润湿演变,发现纳米柱尖端形貌对液态Ga的润湿过程及状态影响极大.  相似文献   

16.
Fabrication of superhydrophobic wood surface by a sol-gel process   总被引:3,自引:0,他引:3  
The superhydrophobic wood surface was fabricated via a sol-gel process followed by a fluorination treatment of 1H, 1H, 2H, 2H- perfluoroalkyltriethoxysilanes (POTS) reagent. The crystallization type of silica nanoparticles on wood surface was characterized using X-ray diffraction (XRD), the microstructure and chemical composition of the superhydrophobic wood surface were described by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the bonding force between the silica nanoparticles and POTS reagent was analyzed by Fourier transform infrared spectroscopy (FT-IR) and the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. An analytical characterization revealed that nanoscale silica spheres stacked uniformly over the wood surface, and with the combination of the high surface roughness of silica nanoparticles and the low surface free energy film of POTS on wood surface, the wood surface has turned its wetting property from hydrophilic into superhydrophobic with a water contact angle of 164° and sliding angle less than 3°.  相似文献   

17.
In this paper, we study the electrowetting character on ZnO nanowires. We grow the ZnO nanowires on indium tin oxide (ITO) by a hydrothermal method, and the ZnO nanowires surface is further hydrophobized by spin-coating Teflon. Such a prepared surface shows superhydrophobic properties with an initial contact angle 165°. When the applied external voltage between the ITO and the sessile droplet is less than 50 V, the contact angle continuously changed from 165° to 120°, and exhibits instant reversibility. For a slightly higher voltage, a mutation of the contact angle changing to 100° was observed and the contact angle was not reversible after removing the applied voltage, which indicates a transition from non-wetting state to wetting state. Further increasing of the applied voltage, the apparent contact angle decreased to an invariable value 70°, and electrical breakdown emerged synchronously.  相似文献   

18.
The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet.  相似文献   

19.
Static and dynamic wetting behaviors of sessile droplet on smooth, microstructured and micro/nanostructured surface under condensation condition are systematically studied. In contrast to the conventional droplet wetting on such natural materials by dropping, we demonstrate here that when dropwise condensation occurs, the sessile droplet will transit from the Cassie-Baxter wetting state to the Wenzel wetting state or partial Cassie-Baxter wetting state on the microstructured surface or the micro/nanostructured surface, which leads to a strong adhesion between the droplet and the substrate. In contrast, the apparent contact angle and the sliding angle on the smooth surface changes a little before and after the condensation because of small roughness. Theoretical analysis shows that the roughness factor controls the adhesion force of the droplet during condensation, and a theoretical model is constructed which will be helpful for us to understand the relationship between the adhesion force and the geometry of the surface.  相似文献   

20.
Wetting process of electrolyte in high density Cu/Sn micro-bumps electrodepositing is reported in this paper. Three methods were adopted to enable electrolyte to permeate photo-etching micro-holes with high aspect ratio, including plasma treatment, adding wetting additive in electrolyte and mechanical action. Wettability of the samples with electrolyte was improved by the first two methods, according to contact angle and surface tension measurement. However, electrolyte still cannot reach up to the bottom of micro-hole. And then, electrolyte was subjected to mechanical action, including agitation and ultrasonic vibration. Under mechanical action, void free Cu/Sn micro-bumps fabrication was achieved in photo-etching micro-holes with depth of 60 μm and radius of 30 μm. At last, we proposed a model to show wetting process of electrolyte in photo-etching micro-holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号