首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在有界星形圆形域上定义了一个新的星形映射子族, 它包含了$\alpha$阶星形映射族和$\alpha$阶强星形映射族作为两个特殊子类. 给出了此类星形映射子族的增长定理和掩盖定理. 另外, 还证明了Reinhardt域$\Omega_{n,p_{2},\cdots,p_{n}}$上此星形映射子族在Roper-Suffridge算子 \begin{align*} F(z)=\Big(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}(f'(z_{1}))^{\gamma_{2}}z_{2},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{n}}(f'(z_{1}))^{\gamma_{n}}z_{n}\Big)' \end{align*} 作用下保持不变, 其中 $\Omega_{n,p_{2},\cdots,p_{n}}=\{z\in {\mathbb{C}}^{n}:|z_1|^2+|z_2|^{p_2}+\cdots + |z_n|^{p_n}<1\}$, $p_{j}\geq1$, $\beta_{j}\in$ $[0, 1]$, $\gamma_{j}\in[0, \frac{1}{p_{j}}]$满足$\beta_{j}+\gamma_{j}\leq1$, 所取的单值解析分支使得 $\big({\frac{f(z_{1})}{z_{1}}}\big)^{\beta_{j}}\big|_{z_{1}=0}=1$, $(f'(z_{1}))^{\gamma_{j}}\mid_{{z_{1}=0}}=1$, $j=2,\cdots,n$. 这些结果不仅包含了许多已有的结果, 而且得到了新的结论.  相似文献   

2.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

3.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

4.
5.
设$\mu$是$[0,1)$上的正规函数, 给出了${\bf C}^{\it n}$中单位球$B$上$\mu$-Bloch空间$\beta_{\mu}$中函数的几种刻画. 证明了下列条件是等价的: (1) $f\in \beta_{\mu}$; \ (2) $f\in H(B)$且函数$\mu(|z|)(1-|z|^{2})^{\gamma-1}R^{\alpha,\gamma}f(z)$ 在$B$上有界; (3) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{1}-1}\frac{\partial^{M_{1}} f}{\partial z^{m}}(z)}$ 在$B$上有界, 其中$|m|=M_{1}$; (4) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{2}-1}R^{(M_{2})}f(z)}$ 在$B$上有界.  相似文献   

6.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

7.
本文讨论了多元线性模型中的一个假设检验问题。假定 $\[{E(Y) = A\theta + B\eta }\]$ $Y的各行独立、正太、同协差阵V$ 现在要检验假设H_0:存在矩阵C使$\theta= C\eta$ 是否成立。首先可将问题化为法式的形式,对法式分两种情况进行讨论: (一)$[V = {\sigma ^2}I,{\sigma ^2}\]$未知,此时可求出 \theta,C,\sigma ^2的最大似然估计(当 H^0成立时)是 $[\left\{ {\begin{array}{*{20}{c}} {\hat \theta = {{({I_p} + \hat C'\hat C)}^{ - 1}}({y_1} + \hat C'{y_2})}\{\hat C = - {{({{T'}_{22}})}^{ - 1}}{{T'}_{12}}}\{{{\hat \sigma }^2} = \frac{1}{{nk}}(\sum\limits_{j = p + 1}^{p + q} {\lambda _j^* + \sum\limits_{j = 1}^k {{d_j})} } } \end{array}} \right.\]$ 其中y_1,y_2是法式 $[E\left( {\begin{array}{*{20}{c}} {{y_1}}\{{y_2}}\{{y_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} \theta \\eta \0 \end{array}} \right)\begin{array}{*{20}{c}} p\q\{n - (p + q)} \end{array}\]$ 中的资料阵y_1,y_2,d_1,\cdots,d_k是y^'_3y_3的全部特征根,$[\lambda _1^* \ge \cdots \lambda _{p + q}^*\]$是$[\left( {\begin{array}{*{20}{c}} {{y_1}}\{{y_2}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{y'}_1}}&{{{y'}_2}} \end{array}} \right)\]$的全部特征根,相应特征向量依$\lambda^*_i$的大小顺序从左到右排成矩阵T,T的分块子阵是T_ij,即 $[T = \left( {\begin{array}{*{20}{c}} {{T_{11}}}&{{T_{12}}}\{{T_{21}}}&{{T_{22}}} \end{array}} \right)\begin{array}{*{20}{c}} p\q \end{array}\]$ 对H_0的广义似然比检验是 $[\Lambda = \sum\limits_{j = p + 1}^k {{\lambda _j}/\sum\limits_{j = 1}^k {{d_j}} } \]$ $=lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$是$y_1^'y_1+y_2^'y_2$的全部特征根。 (二)一般情形V未知,此时 \theta,C的估计量同前,可求出 $[\hat V = \frac{1}{n}({y_2}^\prime {T_{22}}{T_{22}}^\prime {y_2} + {y_2}^\prime {y_2})\]$ H_0相应的Lawley不变检验是 $[\sum\limits_{j = p + 1}^k {{\beta _j}} \ge {\alpha _1}\]$ 其中 $\beta_1 \geq \beta_2 \geq \cdots \beta_k$是$y'_1y_1+y'_2y_2$的相应于$y'_sy_s$的全部特征根。 有关$\Lambda \$的以及$[\sum\limits_{j = p + 1}^k {{\beta _j}} \]$的极限分布将在另外的文章中讨论。  相似文献   

8.
本文的主要建立非齐性度量测度空间上双线性强奇异积分算子$\widetilde{T}$及交换子$\widetilde{T}_{b_{1},b_{2}}$在广义Morrey空间$M^{u}_{p}(\mu)$上的有界性. 在假设Lebesgue可测函数$u, u_{1}, u_{2}\in\mathbb{W}_{\tau}$, $u_{1}u_{2}=u$,且$\tau\in(0,2)$. 证明了算子$\widetilde{T}$是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到空间$M^{u}_{p}(\mu)$有界的, 也是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到广义弱Morrey空间$WM^{u}_{p}(\mu)$有界的,其中$\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$及$1相似文献   

9.
10.
令\{$X$, $X_n$, $n\ge 1$\}是期望为${\mathbb{E}}X=(0,\ldots,0)_{m\times 1}$和协方差阵为${\rm Cov}(X,X)=\sigma^2I_m$的独立同分布的随机向量列, 记$S_n=\sum_{i=1}^{n}X_i$, $n\ge 1$. 对任意$d>0$和$a_n=o((\log\log n)^{-d})$, 本文研究了${{\mathbb{P}}(|S_n|\ge (\varepsilon+a_n)\sigma \sqrt{n}(\log\log n)^d)$的一类加权无穷级数的重对数广义律的精确速率.  相似文献   

11.
研究了与强奇异Calder\'{o}n-Zygmund算子和加权 Lipschitz函数${\rm Lip}_{\beta_0,\omega}$相关的Toeplitz算子$T_b$的sharp极大函数的点态估计,并证明了Toeplitz算子是从 $L^p(\omega)$到$L^q(\omega^{1-q})$上的有界算子.此外, 建立了与强奇异Calder\'{o}n-Zygmund算子和加权 BMO函数${\rm BMO}_{\omega}$相关的Toeplitz算子$T_b$的sharp极大函数的点态估计,并证明了Toeplitz算子是从 $L^p(\mu)$到$L^q(\nu)$上的有界算子.上述结果包含了相应交换子的有界性.  相似文献   

12.
2×2阶上三角型算子矩阵的Moore-Penrose谱   总被引:2,自引:1,他引:1  
设$H_{1}$和$H_{2}$是无穷维可分Hilbert空间. 用$M_{C}$表示$H_{1}\oplusH_{2}$上的2$\times$2阶上三角型算子矩阵$\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. 对给定的算子$A\in{\mathcal{B}}(H_{1})$和$B\in{\mathcal{B}}(H_{2})$,描述了集合$\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$与$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$,其中$\sigma_{M}(\cdot)$表示Moore-Penrose谱.  相似文献   

13.
设$X_1,X_2,\cdots,X_n$和$X^*_1,X^*_2,\cdots,X^*_n$分别服从正态分布$N(\mu_i,\sigma^2)$和$N(\mu^*_i,\sigma^2)$,以$X_{(1)}$,$X^*_{(1)}$分别表示$X_1,\cdots,X_n$和$X^*_1,\cdots,X^*_n$的极小次序统计量,以$X_{(n)}$, $X^*_{(n)}$分别表示$X_1,\cdots,X_n$和$X^*_1,\cdots$,$X^*_n$的极大次序统计量. 我们得到了如下结果:(i)\,如果存在严格单调函数$f$使得$(f(\mu_{1}),\cdots,f(\mu_{n}))\succeq_{\text{m}}$ $(f(\mu^{*}_{1}),\cdots,f(\mu^{*}_{n}))$,且$f'(x)f'(x)\!\geq\!0$, 则$X_{(1)}\!\leq_{\text{st}}\!X^*_{(1)}$;(ii)\,如果存在严格单调函数$f$使得$(f(\mu_{1})$,$\cdots,f(\mu_{n}))\succeq_{\text{m}}(f(\mu^{*}_{1}),\cdots,f(\mu^{*}_{n}))$,且$f'(x)f'(x)\leq 0$, 则$X_{(n)}\geq_{\text{st}}X^*_{(n)}$.(iii)\,设$X_{1},X_{2},\cdots,X_{n}$和\, $X^*_{1},X^*_{2},\cdots,X^*_{n}$分别服从正态分布$N(\mu,\sigma_i^2)$和$N(\mu,\sigma_i^{*2})$,若$({1}/{\sigma_{1}},\cdots,{1}/{\sigma_{n}})\succeq_{\text{m}}({1}/{\sigma^{*}_{1}},\cdots,{1}/{\sigma^{*}_{n}})$,则有$X_{(1)}\leq_{\text{st}}X^*_{(1)}$和$X_{(n)}\geq_{\text{st}}X^*_{(n)}$同时成立.  相似文献   

14.
设f是区间[a,b]上连续的凸函数,我们证明了Hadamard的不等式 $[f(\frac{{a + b}}{2}) \le \frac{1}{{b - a}}\int_a^b {f(x)dx \le \frac{{f(a) + f(b)}}{2}}$ 可以拓广成对[a,b]中任意n+1个点x_0,\cdots,x_n和正数组p_0,\cdots,p_n都成立的下列不等式 $f(\frac{\sum\limits_{i=0}^n p_ix_i}{\sum\limits_{i=0}^n p_i}) \leq |\Omega|^-1 \int_\Omega f(x(t))dt \leq \frac{\sum\limits _{i=0}^n {p_if(x_i)}}{\sum\limits_{i=0}^n p_i}$ 式中\Omega是一个包含于n维单位立方体的n维长方体,其重心的第i个坐标为$\sum\limits _{j=i}^n p_j /\sum\limits_{j=i-1}^n p_i$,|\Omega|为\Omega的体积,对\Omega中的任意点$t=(t_1,\cdots,t_n)$, $w(t)=x_0(1-t_1)+\sum\limits _{i=1}^{n-1} x_i(1-t_{i+1})\prod\limits_{j = 1}^i {{t_j}} +x_n \prod\limits _{j=1}^n t_j$ 不等式中两个等号分别成立的情形亦已被分离出来。 此不等式是著名的Jensen 不等式的精密化。  相似文献   

15.
On a rectangular domain \[R(\delta ) = \{ 0 \leqslant t \leqslant \delta ,0 \leqslant x \leqslant 1\} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)\] We consider the second initial-boundary value problem for the quasi-linear hyperbolic- parabolic coupled system \[{\begin{array}{*{20}{c}} {\sum\limits_{j = 1}^n {{\zeta _{ij}}(t,x,u,v)(\frac{{\partial {u_j}}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial {u_j}}}{{\partial x}})} } \\ { = {\zeta _l}(t,x,u,v)(\frac{{\partial v}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial v}}{{\partial x}})} \\ { + {\mu _l}(t,x,u,v,{v_x}),(l = 1,...,n)} \\ {\frac{{\partial v}}{{\partial t}} - a(t,x,u,v,{v_x})\frac{{{\partial ^2}v}}{{\partial {x^2}}} = b(t,x,u,v,{v_x})} \end{array}}\] without loss of generatity,the initial conditions may be written as \[t = 0,{u_j} = 0,(j = 1,...,n),v = 0\] and we can suppose that \[\left\{ {\begin{array}{*{20}{c}} {a(0,x,0,0,0) \equiv 1} \\ {b(0,x,0,0,0) \equiv 0} \\ {{\zeta _{ij}}(0,x,0,0) \equiv {\delta _{lj}} = \left\{ {\begin{array}{*{20}{c}} {1,if{\kern 1pt} {\kern 1pt} {\kern 1pt} l = j} \\ {0,if{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \ne j} \end{array}} \right.} \end{array}} \right.\] The boundary conditions are as follows: \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {G_{\bar r}}(t,u,v),(\bar r = 1,...,h;h \leqslant n)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right. \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {{\hat G}_{\hat s}}(t,u,v),(\hat s = m + 1,...,n;m \geqslant 0)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right. \hfill \\ \end{gathered} \] Uf = Q-f(t> u, x), (r = 1> k^n), We assume that the following conditions are satisfied: (1) the orientability condition \[\begin{gathered} {\lambda _{\bar r}}(0,1,0,0,0) < 0,{\lambda _s}(0,1,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ {\lambda _{\bar r}}(0,0,0,0,0) < 0,{\lambda _{\hat s}}(0,0,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \] (2) the compatibility condition \[\begin{gathered} \frac{{\partial {G_{\bar r}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,1,0,0,0) = {\mu _{\bar r}}(0,1,0,0,0) \hfill \ \frac{{\partial {{\hat G}_{\hat s}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,0,0,0,0) = {\mu _{\hat s}}(0,0,0,0,0) \hfill \ (\bar r = 1,...,h;\hat s = m + 1,...,n);{F_ \pm }(0,0,0) = 0 \hfill \\ \end{gathered} \] (3) the condition of characterizing number \[\begin{gathered} \sum\limits_{j = 1}^n {\left| {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1 \hfill \ \sum\limits_{j = 1}^n {\left| {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1(\bar r = 1,...,h,\hat s = m + 1,...,n \hfill \\ \end{gathered} \] (4)The smoothness condition: the coefficients of the system and the boundary conditions are suitably smooth. By means of certain a priori estimations for the solution of the heat equation and the linear hyperbolic system, using an iteration method and Leray-Schauder fixed point theorem, we have proved Theorem 1. Under the preceding hypotheses, for the second initial-boundary value problem (2)—(4), (6), (7), there exists uniquely a classical solution on R(8) where \[\delta \]>0 is suitably small. Theorem 2. In theorem the 1,condition of characterizing number (13) may be ameliorated as the following solvable condition; \[\left\{ {\begin{array}{*{20}{c}} {\det |({\delta _{\bar rr'}} - \frac{{\partial {G_{\bar r}}}}{{\partial {u_{r'}}}}(0,0,0)| \ne 0,(\bar r,r' = 1,...,h)} \\ {\det |({\delta _{\hat s\hat s'}} - \frac{{\partial {G_{\hat s}}}}{{\partial {u_{\hat s'}}}}(0,0,0)| \ne 0,(\hat s,\hat s' = m + 1,...,n)} \end{array}} \right.\] i.e,the boundary condition (6),(7)may be written as \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {H_{\bar r}}(t,{u_s},v),} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {H_{\hat s}}(t,{u_{\hat r}},v){\kern 1pt} ,} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \]  相似文献   

16.
孙传红  李澎涛 《应用数学》2021,34(1):113-122
令$\mathcal{L}=-{\Delta}_{\mathbb{H}^{n}}+V$为Heisenberg群$\mathbb{H}^{n}$上的Schr\"odinger算子, 其中${\Delta}_{\mathbb{H}^{n}}$为次Laplace算子, 非负位势$V$属于逆H\"{o}lder类. 本文中, 利用从属性公式, 我们给出与$\mathcal{L}$相关的Poisson半群的分数阶导数的正则性估计, 作为应用, 我们得到了与$\mathcal{L}$相关的Campanato型空间的一个刻画.  相似文献   

17.
令$k,\ell \geq 2$是正整数.令$A$是无限非负整数的集合.对$n\in \mathbb{N}$, 令$r_{1,k,\ldots,k^{\ell-1}}(A, n)$表示方程$n=a_0+ka_1+\cdots +k^{\ell-1}a_{\ell-1}$, $a_0, \ldots, a_{\ell-1}\in A$解的个数. 在本文中, 我们证明了对所有$n\geq 0$, $r_{1,k,\ldots,k^{\ell-1}}(A, n)=1$当且仅当$A$是$k^\ell$进制展开中数位小于$k$的所有非负整数的集合. 这个结果部分回答了S\''{a}rk\"{o}zy and S\''{o}s关于多维线性型表示的一个问题.  相似文献   

18.
在这篇文章中,我们通过Hardy算子交换子$\mathrm{H}_b$与它的对偶算子交换子$\mathrm{H}^*_b$, 其中$b\in {\mathrm{CMOL}^{p_2, \lambda}_{\rm rad}L^{p_1}_{\rm ang}(\mathbb R^n)}$,建立了混合径角$\lambda$中心有界平均振荡空间的一个特征.  相似文献   

19.
设$\Lambda=\{\lambda_{n}\}_{n=1}^{\infty}$为正的实数数列, 且当$n\rightarrow\infty$时, 有$\lambda_{n}\searrow 0$.本文给出了当 $\lambda_{n}\leq Mn^{-\frac{1}{2}},\;n=1,2, \cdots ,$(其中$M>0$为一正常数)时M\"{u}ntz系统$\{x^{\lambda_n}\}$的有理函数在$ L_{[0,1]} ^{p}$空间的逼近速度,主要结论为$R_{n} (f, \Lambda )_{L^{p}}\leq C_M \omega (f, n^{-\frac{1}{2}})_{L^{p}},\;1 \leq p \leq \infty.$  相似文献   

20.
广义线性回归极大似然估计的强相合性   总被引:1,自引:0,他引:1       下载免费PDF全文
设有该文第1节所描述的广义线性回归模型,以$\underline{\lambda}_n$和$\overline{\lambda}_n$分别记$\sum\limits_{i=1}^{n}Z_iZ_i^{\prime}$的最小和最大特征根,$\hat{\beta}_n$记$\beta_0$的极大似然估计.在文献[1]中,当\{$Z_i,i\ge1$\}有界时得到$\hat{\beta}_n$强相合的充分条件,在自然联系和非自然联系下分别为$\underline{\lambda}_n\rightarrow\infty$, $(\overline{\lambda}_n)^{1/2+\delta}=O(\underline{\lambda}_n)$(对某$\delta>0$)以及$\underline{\lambda}_n\rightarrow\infty$, $\overline{\lambda}_n=O(\underline{\lambda}_n)$.作者将后一结果改进为只要求$(\overline{\lambda}_n)^{1/2+\delta}=O(\underline{\lambda}_n)$,从而与自然联系情况下的条件达到一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号