首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It is demonstrated that under the hypotheses I—III the problem $\[\left\{ {\begin{array}{*{20}{c}} {div((k(U) + \varepsilon )|DU{|^{M - 1}}DU) = f(|x|,U) + \varepsilon U{\text{ }}in{\text{ }}{R^N},N > 1,{\text{ (1}}{\text{.1}}{{\text{)}}_\varepsilon }} \ {U(0) > 0,U(x) \geqslant 0{\text{ on }}{R^N},U(x) \to 0{\text{ as }}|x| \to + \infty {\text{ }}(1.2)} \end{array}} \right.\]$ for each fixed $\epsilon >0$ has infinitely many distinct radially symmetric solutions $U_\epsilon=V_\epsilon(|x|)$ such that $V_\epsilon(s),s^{N-1}(k(V_\epsilon(s))+\epsilon)|V''(s)|^{M-1}V''_\epsilon(s)\in C[0,+\infinity)\capC^1(0,+\infinity)$, $\[\left\{ {\begin{array}{*{20}{c}} {({s^{N - 1}}(k({V_\varepsilon }(s)) + \varepsilon )|V''(s){|^{M - 1}}V''(s)) = {\varepsilon ^{N - 1}}(f(s,{V_\varepsilon }(s)) + \varepsilon {V_\varepsilon }(s))for{\text{ }}s > 0,{{(1.3)}_\varepsilon }} \ {{V_\varepsilon }(0) = B > 0,{V_\varepsilon }(s) \geqslant 0{\text{ for }}s > 0,and{\text{ }}{V_\varepsilon }( + \infty ) = 0,(1.4)} \end{array}} \right.\]$ where B is a positive number chosen arbitrarily, which extends the result in [3]. In particular, the author proves that $U_0(x)=V_0(|x|)$ is a weak solution of the problem $(l.l)_0-(1.2)$.  相似文献   

2.
构造相应于有限维非退化可解李代数的顶点代数   总被引:3,自引:0,他引:3  
设g是带有非退化不变对称双线性型的有限维可解李代数,该文首先应用g的仿射李代数g的表示理论,构造出一类水平为l的限制g-模Vg(l,0).然后应用顶点算子的局部理论在hom(Vg(l,0),Vg(l,0)((x)))中找到一类顶点代数Lvg(l,0).建立了LVg(l,0)到Vg(l,0)的映射,最后证明了这类映射是顶点代数同构.  相似文献   

3.
建立了满足如下条件的可迁$\mathbb{Z}$-分次模Lie超代数$\frak{g}=\oplus_{-1\leq i\leq r}\frak{g}_{i}$的嵌入定理:(i) $\frak{g}_{0}\simeq \widetilde{\mathrm{p}}(\frak{g}_{-1}) $ 并且$\frak{g}_{0}$-模 $\frak{g}_{-1}$ 同构于$\widetilde{\mathrm{p}}(\frak{g}_{-1})$的自然模;(ii) $\dim \frak{g}_1=\frac 23 n(2n^2+1),$ 其中 $n=\frac{1}{2} \dim \frak{g}_{-1}.$特别地, 证明了满足上述条件的有限维单模Lie超代数同构于奇Hamilton模Lie超代数.对局限Lie超代数也做了相应的讨论.  相似文献   

4.
设$\mu$是$[0,1)$上的正规函数, 给出了${\bf C}^{\it n}$中单位球$B$上$\mu$-Bloch空间$\beta_{\mu}$中函数的几种刻画. 证明了下列条件是等价的: (1) $f\in \beta_{\mu}$; \ (2) $f\in H(B)$且函数$\mu(|z|)(1-|z|^{2})^{\gamma-1}R^{\alpha,\gamma}f(z)$ 在$B$上有界; (3) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{1}-1}\frac{\partial^{M_{1}} f}{\partial z^{m}}(z)}$ 在$B$上有界, 其中$|m|=M_{1}$; (4) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{2}-1}R^{(M_{2})}f(z)}$ 在$B$上有界.  相似文献   

5.
假定 $X$ 是具有范数$\|\cdot\|$的复 Banach 空间, $n$ 是一个满足 $\dim X\geq n\geq2$的正整数. 本文考虑由下式定义的推广的Roper-Suffridge算子 $\Phi_{n,\beta_2, \gamma_2, \ldots , \beta_{n+1}, \gamma_{n+1}}(f)$: \begin{equation} \begin{array}{lll} \Phi _{n, \beta_2, \gamma_2, \ldots, \beta_{n+1},\gamma_{n+1}}(f)(x) &;\hspace{-3mm}=&;\hspace{-3mm}\dl\he{j=1}{n}\bigg(\frac{f(x^*_1(x))}{x^*_1(x)})\bigg)^{\beta_j}(f''(x^*_1(x))^{\gamma_j}x^*_j(x) x_j\\ &;&;+\bigg(\dl\frac{f(x^*_1(x))}{x^*_1(x)}\bigg)^{\beta_{n+1}}(f''(x^*_1(x)))^{\gamma_{n+1}}\bigg(x-\dl\he{j=1}{n}x^*_j(x) x_j\bigg),\nonumber \end{array} \end{equation} 其中 $x\in\Omega_{p_1, p_2, \ldots, p_{n+1}}$, $\beta_1=1, \gamma_1=0$ 和 \begin{equation} \begin{array}{lll} \Omega_{p_1, p_2, \ldots, p_{n+1}}=\bigg\{x\in X: \dl\he{j=1}{n}| x^*_j(x)|^{p_j}+\bigg\|x-\dl\he{j=1}{n}x^*_j(x)x_j\bigg\|^{p_{n+1}}<1\bigg\},\nonumber \end{array} \end{equation} 这里 $p_j>1 \,( j=1, 2,\ldots, n+1$), 线性无关族 $\{x_1, x_2, \ldots, x_n \}\subset X $ 与 $\{x^*_1, x^*_2, \ldots, x^*_n \}\subset X^* $ 满足 $x^*_j(x_j)=\|x_j\|=1 (j=1, 2, \ldots, n)$ 和 $x^*_j(x_k)=0 \, (j\neq k)$, 我们选取幂函数的单值分支满足 $(\frac{f(\xi)}{\xi})^{\beta_j}|_{\xi=0}= 1$ 和 $(f''(\xi))^{\gamma_j}|_{\xi=0}=1, \, j=2, \ldots , n+1$. 本文将证明: 对某些合适的常数$\beta_j, \gamma_j$, 算子$\Phi_{n,\beta_2, \gamma_2, \ldots, \beta_{n+1}, \gamma_{n+1}}(f)$ 在$\Omega_{p_1, p_2, \ldots , p_{n+1}}$上保持$\alpha$阶的殆$\beta$型螺形映照和 $\alpha$阶的$\beta$型螺形映照.  相似文献   

6.
设g是有限维单李代数,是相应于g的无扭仿型Kac-Moody代数的导代数.讨论了相应于的顶点代数V_(l,0)的极小生成问题,证明了V_(l,0)作为顶点代数由a,h两个元素生成,其中a,h∈g.  相似文献   

7.
在有界星形圆形域上定义了一个新的星形映射子族, 它包含了$\alpha$阶星形映射族和$\alpha$阶强星形映射族作为两个特殊子类. 给出了此类星形映射子族的增长定理和掩盖定理. 另外, 还证明了Reinhardt域$\Omega_{n,p_{2},\cdots,p_{n}}$上此星形映射子族在Roper-Suffridge算子 \begin{align*} F(z)=\Big(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}(f'(z_{1}))^{\gamma_{2}}z_{2},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{n}}(f'(z_{1}))^{\gamma_{n}}z_{n}\Big)' \end{align*} 作用下保持不变, 其中 $\Omega_{n,p_{2},\cdots,p_{n}}=\{z\in {\mathbb{C}}^{n}:|z_1|^2+|z_2|^{p_2}+\cdots + |z_n|^{p_n}<1\}$, $p_{j}\geq1$, $\beta_{j}\in$ $[0, 1]$, $\gamma_{j}\in[0, \frac{1}{p_{j}}]$满足$\beta_{j}+\gamma_{j}\leq1$, 所取的单值解析分支使得 $\big({\frac{f(z_{1})}{z_{1}}}\big)^{\beta_{j}}\big|_{z_{1}=0}=1$, $(f'(z_{1}))^{\gamma_{j}}\mid_{{z_{1}=0}}=1$, $j=2,\cdots,n$. 这些结果不仅包含了许多已有的结果, 而且得到了新的结论.  相似文献   

8.
On a rectangular domain \[R(\delta ) = \{ 0 \leqslant t \leqslant \delta ,0 \leqslant x \leqslant 1\} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)\] We consider the second initial-boundary value problem for the quasi-linear hyperbolic- parabolic coupled system \[{\begin{array}{*{20}{c}} {\sum\limits_{j = 1}^n {{\zeta _{ij}}(t,x,u,v)(\frac{{\partial {u_j}}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial {u_j}}}{{\partial x}})} } \\ { = {\zeta _l}(t,x,u,v)(\frac{{\partial v}}{{\partial t}} + {\lambda _l}(t,x,u,v,{v_x})\frac{{\partial v}}{{\partial x}})} \\ { + {\mu _l}(t,x,u,v,{v_x}),(l = 1,...,n)} \\ {\frac{{\partial v}}{{\partial t}} - a(t,x,u,v,{v_x})\frac{{{\partial ^2}v}}{{\partial {x^2}}} = b(t,x,u,v,{v_x})} \end{array}}\] without loss of generatity,the initial conditions may be written as \[t = 0,{u_j} = 0,(j = 1,...,n),v = 0\] and we can suppose that \[\left\{ {\begin{array}{*{20}{c}} {a(0,x,0,0,0) \equiv 1} \\ {b(0,x,0,0,0) \equiv 0} \\ {{\zeta _{ij}}(0,x,0,0) \equiv {\delta _{lj}} = \left\{ {\begin{array}{*{20}{c}} {1,if{\kern 1pt} {\kern 1pt} {\kern 1pt} l = j} \\ {0,if{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \ne j} \end{array}} \right.} \end{array}} \right.\] The boundary conditions are as follows: \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {G_{\bar r}}(t,u,v),(\bar r = 1,...,h;h \leqslant n)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right. \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {{\hat G}_{\hat s}}(t,u,v),(\hat s = m + 1,...,n;m \geqslant 0)} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right. \hfill \\ \end{gathered} \] Uf = Q-f(t> u, x), (r = 1> k^n), We assume that the following conditions are satisfied: (1) the orientability condition \[\begin{gathered} {\lambda _{\bar r}}(0,1,0,0,0) < 0,{\lambda _s}(0,1,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ {\lambda _{\bar r}}(0,0,0,0,0) < 0,{\lambda _{\hat s}}(0,0,0,0,0) > 0,\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \] (2) the compatibility condition \[\begin{gathered} \frac{{\partial {G_{\bar r}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,1,0,0,0) = {\mu _{\bar r}}(0,1,0,0,0) \hfill \ \frac{{\partial {{\hat G}_{\hat s}}}}{{\partial t}}(0,0,0) + \sum\limits_{j = 1}^n {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}} (0,0,0){\mu _j}(0,0,0,0,0) = {\mu _{\hat s}}(0,0,0,0,0) \hfill \ (\bar r = 1,...,h;\hat s = m + 1,...,n);{F_ \pm }(0,0,0) = 0 \hfill \\ \end{gathered} \] (3) the condition of characterizing number \[\begin{gathered} \sum\limits_{j = 1}^n {\left| {\frac{{\partial {G_{\bar r}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1 \hfill \ \sum\limits_{j = 1}^n {\left| {\frac{{\partial {{\hat G}_{\hat s}}}}{{\partial {u_j}}}(0,0,0)} \right|} < 1(\bar r = 1,...,h,\hat s = m + 1,...,n \hfill \\ \end{gathered} \] (4)The smoothness condition: the coefficients of the system and the boundary conditions are suitably smooth. By means of certain a priori estimations for the solution of the heat equation and the linear hyperbolic system, using an iteration method and Leray-Schauder fixed point theorem, we have proved Theorem 1. Under the preceding hypotheses, for the second initial-boundary value problem (2)—(4), (6), (7), there exists uniquely a classical solution on R(8) where \[\delta \]>0 is suitably small. Theorem 2. In theorem the 1,condition of characterizing number (13) may be ameliorated as the following solvable condition; \[\left\{ {\begin{array}{*{20}{c}} {\det |({\delta _{\bar rr'}} - \frac{{\partial {G_{\bar r}}}}{{\partial {u_{r'}}}}(0,0,0)| \ne 0,(\bar r,r' = 1,...,h)} \\ {\det |({\delta _{\hat s\hat s'}} - \frac{{\partial {G_{\hat s}}}}{{\partial {u_{\hat s'}}}}(0,0,0)| \ne 0,(\hat s,\hat s' = m + 1,...,n)} \end{array}} \right.\] i.e,the boundary condition (6),(7)may be written as \[\begin{gathered} on{\kern 1pt} {\kern 1pt} {\kern 1pt} x = 1,\left\{ {\begin{array}{*{20}{c}} {{u_{\bar r}} = {H_{\bar r}}(t,{u_s},v),} \\ {\frac{{\partial v}}{{\partial x}} = {F_ + }(t,u,v);} \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\bar r = 1,...,h} \\ {s = h + 1,...,n} \end{array}} \right) \hfill \ on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} x = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left\{ {\begin{array}{*{20}{c}} {{u_{\hat s}} = {H_{\hat s}}(t,{u_{\hat r}},v){\kern 1pt} ,} \\ {\frac{{\partial v}}{{\partial x}} = {F_ - }(t,u,v){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \end{array}} \right.\left( {\begin{array}{*{20}{c}} {\hat r = 1,...,m} \\ {\hat s = m + 1,...,n} \end{array}} \right) \hfill \\ \end{gathered} \]  相似文献   

9.
2×2阶上三角型算子矩阵的Moore-Penrose谱   总被引:2,自引:1,他引:1  
设$H_{1}$和$H_{2}$是无穷维可分Hilbert空间. 用$M_{C}$表示$H_{1}\oplusH_{2}$上的2$\times$2阶上三角型算子矩阵$\left(\begin{array}{cc} A & C \\ 0 & B \\\end{array}\right)$. 对给定的算子$A\in{\mathcal{B}}(H_{1})$和$B\in{\mathcal{B}}(H_{2})$,描述了集合$\bigcap\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$与$\bigcup\limits_{C\in{\mathcal{B}}(H_{2},H_{1})}\!\!\!\sigma_{M}(M_{C})$,其中$\sigma_{M}(\cdot)$表示Moore-Penrose谱.  相似文献   

10.
设$F$ 为域, $n\geq 3$, $\bf{N}$$(n,\mathbb{F})$ 为域$\mathbb{F}$ 上所有$n\times n$ 阶严格上三角矩阵构成的严格上三角矩阵李代数, 其李运算为$[x,y]=xy-yx$. $\bf{N}$$(n, \mathbb{F})$ 上一线性映射$\varphi$ 称为积零导子,如果由$[x,y]=0, x,y\in \bf{N}$$(n,\mathbb{F})$,总可推出 $[\varphi(x), y]+[x,\varphi(y)]=0$. 本文证明 $\bf{N}$$(n,\mathbb{F})$上一线性映射 $\varphi$ 为积零导子当且仅当 $\varphi$ 为$\bf{N}$$(n,\mathbb{F})$ 上内导子, 对角线导子, 极端导子, 中心导子和标量乘法的和.  相似文献   

11.
有限维非退化可解李代数的顶点算子代数   总被引:4,自引:0,他引:4  
王书琴 《数学学报》2005,48(5):867-878
构造相应于非退化可解李代数g的顶点算子代数分两步进行,首先构造顶点代数.本文是在已经得到的相应于非退化可解李代数g的顶点代数(Vg(l,0),Y(V,1)上构造顶点算子代数.定义了非退化可解李代数g的Casimir算子Ω,给出了在伴随表示下Ω作用在g上是0及相关性质,并应用Ω定义出Vg(l,0)中元素ω,证明了Vg(l,0)关于ω的顶点算子YV(ω,x)的系数构成一个Virasoro代数-模,还证明了ω满足顶点算子代数定义中Virasoro-向量的所有公理.从而证得(Vg(l,0),Yv,1,ω)是一个顶点算子代数.  相似文献   

12.
Meng Dao Ji  Zhu Lin Sheng 《代数通讯》2013,41(13):4181-4197
In this paper, we will discuss the properties of solvable complete Lie algebra, describe the structures of the root spaces of solvable complete Lie algebra, prove that solvable Lie algebras of maximal rank are com-plete, and construct some new complete Lie algebras from Kac-Moody algebras.  相似文献   

13.
This paper reviews some recent results on the parafermion vertex operator algebra associated to the integrable highest weight module L(k, 0) of positive integer level k for any affine Kac-Moody Lie algebra ĝ, where g is a finite dimensional simple Lie algebra. In particular, the generators and the C 2-cofiniteness of the parafermion vertex operator algebras are discussed. A proof of the well-known fact that the parafermion vertex operator algebra can be realized as the commutant of a lattice vertex operator algebra in L(k, 0) is also given.  相似文献   

14.
吴明忠 《数学季刊》2011,(1):100-107
In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solvable Lie algebras with filiform Rn nilradicals is complete.  相似文献   

15.
广义Baby-TKK李代数的一类顶点表示   总被引:1,自引:1,他引:0  
李清桂 《数学研究》2005,38(1):42-56
利用广义 Virasoro- Toroidal李代数的顶点表示理论研究了广义 Baby- TKK李代数的一类顶点表示 .  相似文献   

16.
In this paper we first present a 3-dimensional Lie algebra H and enlarge it into a 6-dimensional Lie algebra T with corresponding loop algebras?H and?T, respectively. By using the loop algebra?H and the Tu scheme, we obtain an integrable hierarchy from which we derive a new Darboux transformation to produce a set of exact periodic solutions. With the loop algebra?T, a new integrable-coupling hierarchy is obtained and reduced to some variable-coefficient nonlinear equations, whose Hamiltonian structure is derived by using the variational identity. Furthermore, we construct a higher-dimensional loop algebraˉH of the Lie algebra H from which a new Liouville-integrable hierarchy with 5-potential functions is produced and reduced to a complex m Kd V equation, whose 3-Hamiltonian structure can be obtained by using the trace identity. A new approach is then given for deriving multiHamiltonian structures of integrable hierarchies. Finally, we extend the loop algebra?H to obtain an integrable hierarchy with variable coefficients.  相似文献   

17.
卢右辉  李昕 《数学学报》2006,49(2):271-282
本文给出了非退化可解李代数的两个类型:三次可解型非退化李代数和扩充的 Heisenberg李代数,并确定三次可解型非退化李代数及其导子李代数的结构.  相似文献   

18.
设L为代数闭域F上有限维李代数,著名的李定理说:若char F=0,则L为可解当且仅当L的任一有限维不可约模为1维的.在这里特征为0及模为有限维两个条件都是本质的.(1)若charF=P>0,则L为交换当且仅当L的任一(有限维)不可约模为1维的;(2)若char F=0,则L为交换当且仅当L的任一(有限维或无限维)不可约模为1维的; (3)若char F=P>7,L为李代数(限制李代数),则L为可解当且仅当L的任一不可约模(限制模)的维数为p的幂.  相似文献   

19.
本文研究局部顶点李代数与顶点代数之间的关系.利用由局部顶点李代数构造顶点代数的方法,定义局部顶点李代数之间的同态,证明了同态可以唯一诱导出由局部顶点李代数构造所得到的顶点代数之间的同态.  相似文献   

20.
In order to study the representation theory of Lie algebras and algebraic groups, Cline, Parshall and Scott put forward the notion of abstract Kazhdan-Lusztig theory for quasihereditary algebras. Assume that a quasi-hereditary algebra B has the vertex set Q0 = {1,..., n} such that HomB(P(i), P(j)) = 0 for i 〉 j. In this paper, it is shown that if the quasi-hereditary algebra B has a Kazhdan-Lusztig theory relative to a length function l, then its dual extension algebra A = .A(B) has also the Kazhdan-Lusztig theory relative to the length function l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号