首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
我们运用扰动方法证明了带有Minkowski平均算子非局部Neumann系统$$\begin{aligned}\begin{cases}\Big(r^{N-1}\frac{u''}{\sqrt{1-u''^{2}}}\Big)''=r^{N-1}f(r, u),\\\ r\in(0, 1),\ \ \ u''(0)=0,\ \ \ u''(1)=\int_{0}^{1}u''(s)dg(s)\\\end{cases}\end{aligned}$$解的存在性, 其中$k, N\geq1$是整数, $f=(f_{1},f_{2},\ldots,f_{k}):[0, 1]\times\mathbb{R}^{k}\rightarrow\mathbb{R}^{k}$连续且$g:[0, 1]\rightarrow\mathbb{R}^{k}$是有界变差函数.  相似文献   

2.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献   

3.
本文的主要建立非齐性度量测度空间上双线性强奇异积分算子$\widetilde{T}$及交换子$\widetilde{T}_{b_{1},b_{2}}$在广义Morrey空间$M^{u}_{p}(\mu)$上的有界性. 在假设Lebesgue可测函数$u, u_{1}, u_{2}\in\mathbb{W}_{\tau}$, $u_{1}u_{2}=u$,且$\tau\in(0,2)$. 证明了算子$\widetilde{T}$是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到空间$M^{u}_{p}(\mu)$有界的, 也是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到广义弱Morrey空间$WM^{u}_{p}(\mu)$有界的,其中$\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$及$1相似文献   

4.
假定 $X$ 是具有范数$\|\cdot\|$的复 Banach 空间, $n$ 是一个满足 $\dim X\geq n\geq2$的正整数. 本文考虑由下式定义的推广的Roper-Suffridge算子 $\Phi_{n,\beta_2, \gamma_2, \ldots , \beta_{n+1}, \gamma_{n+1}}(f)$: \begin{equation} \begin{array}{lll} \Phi _{n, \beta_2, \gamma_2, \ldots, \beta_{n+1},\gamma_{n+1}}(f)(x) &;\hspace{-3mm}=&;\hspace{-3mm}\dl\he{j=1}{n}\bigg(\frac{f(x^*_1(x))}{x^*_1(x)})\bigg)^{\beta_j}(f''(x^*_1(x))^{\gamma_j}x^*_j(x) x_j\\ &;&;+\bigg(\dl\frac{f(x^*_1(x))}{x^*_1(x)}\bigg)^{\beta_{n+1}}(f''(x^*_1(x)))^{\gamma_{n+1}}\bigg(x-\dl\he{j=1}{n}x^*_j(x) x_j\bigg),\nonumber \end{array} \end{equation} 其中 $x\in\Omega_{p_1, p_2, \ldots, p_{n+1}}$, $\beta_1=1, \gamma_1=0$ 和 \begin{equation} \begin{array}{lll} \Omega_{p_1, p_2, \ldots, p_{n+1}}=\bigg\{x\in X: \dl\he{j=1}{n}| x^*_j(x)|^{p_j}+\bigg\|x-\dl\he{j=1}{n}x^*_j(x)x_j\bigg\|^{p_{n+1}}<1\bigg\},\nonumber \end{array} \end{equation} 这里 $p_j>1 \,( j=1, 2,\ldots, n+1$), 线性无关族 $\{x_1, x_2, \ldots, x_n \}\subset X $ 与 $\{x^*_1, x^*_2, \ldots, x^*_n \}\subset X^* $ 满足 $x^*_j(x_j)=\|x_j\|=1 (j=1, 2, \ldots, n)$ 和 $x^*_j(x_k)=0 \, (j\neq k)$, 我们选取幂函数的单值分支满足 $(\frac{f(\xi)}{\xi})^{\beta_j}|_{\xi=0}= 1$ 和 $(f''(\xi))^{\gamma_j}|_{\xi=0}=1, \, j=2, \ldots , n+1$. 本文将证明: 对某些合适的常数$\beta_j, \gamma_j$, 算子$\Phi_{n,\beta_2, \gamma_2, \ldots, \beta_{n+1}, \gamma_{n+1}}(f)$ 在$\Omega_{p_1, p_2, \ldots , p_{n+1}}$上保持$\alpha$阶的殆$\beta$型螺形映照和 $\alpha$阶的$\beta$型螺形映照.  相似文献   

5.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

6.
线性过程关于大数律的精确渐近性   总被引:1,自引:0,他引:1       下载免费PDF全文
该文主要讨论的是滑线性过程 $X_k=\sum\limits_{i=-\infty}^\infty a_{i+k}\varepsilon_i$,其中 $\{\varepsilon_i; -\infty$\varphi$ -混合或负相伴随机变量序列,$\{a_i;-\inftyp$, 若 $E|\varepsilon_1|^r<\infty$$\lim_{\epsilon\searrow 0}\epsilon^{2(r-p)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2}P\{|S_n|\geq \epsilonn^{1/p}\}=\frac{p}{r-p}E|Z|^{2(r-p)/(2-p)},$ 其中 $Z$ 是服从均值为零,方差为 $\tau^2=\sigma^2\cdot(\sum\limits_{i=-\infty}^\infty a_i)^2$的正态分布.  相似文献   

7.
建立了满足如下条件的可迁$\mathbb{Z}$-分次模Lie超代数$\frak{g}=\oplus_{-1\leq i\leq r}\frak{g}_{i}$的嵌入定理:(i) $\frak{g}_{0}\simeq \widetilde{\mathrm{p}}(\frak{g}_{-1}) $ 并且$\frak{g}_{0}$-模 $\frak{g}_{-1}$ 同构于$\widetilde{\mathrm{p}}(\frak{g}_{-1})$的自然模;(ii) $\dim \frak{g}_1=\frac 23 n(2n^2+1),$ 其中 $n=\frac{1}{2} \dim \frak{g}_{-1}.$特别地, 证明了满足上述条件的有限维单模Lie超代数同构于奇Hamilton模Lie超代数.对局限Lie超代数也做了相应的讨论.  相似文献   

8.
对构成广义Greiner算子的向量场$X_j = \frac{\partial }{\partial x_j} + 2ky_j \vert z\vert ^{2k - 2}\frac{\partial }{\partialt}$, $Y_j = \frac{\partial }{\partial y_j } - 2kx_j \vert z\vert^{2k - 2}\frac{\partial }{\partial t}$, j = 1,... ,n, x,y∈ Rn, $z = x + \sqrt { - 1} \,y$, t ∈ R, k ≥1, 得到了拟球域内和拟球域外的Hardy型不等式;建立了广义Picone型恒等式,并由此导出比文献[3]更一般的全空间上的Hardy型不等式;并在$p = 2$时建立了具最佳常数的Hardy型不等式.  相似文献   

9.
设$\Lambda=\{\lambda_{n}\}_{n=1}^{\infty}$为正的实数数列, 且当$n\rightarrow\infty$时, 有$\lambda_{n}\searrow 0$.本文给出了当 $\lambda_{n}\leq Mn^{-\frac{1}{2}},\;n=1,2, \cdots ,$(其中$M>0$为一正常数)时M\"{u}ntz系统$\{x^{\lambda_n}\}$的有理函数在$ L_{[0,1]} ^{p}$空间的逼近速度,主要结论为$R_{n} (f, \Lambda )_{L^{p}}\leq C_M \omega (f, n^{-\frac{1}{2}})_{L^{p}},\;1 \leq p \leq \infty.$  相似文献   

10.
该文的主要结果是: 对任意Zygmund类$C^{p,Z}$映射$f:R^{n}\rightarrow R^{m}$, 若$\frac{n-m}{2}\leq p\leq n-m-1$, 则有mes$K_{f}>0$或者mes$C_{f}>0$. 这个结果给出了Hirsch问题的部分回答.  相似文献   

11.
12.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

13.
This paper is concerned with the $p(x)$-Laplacian equation of the form $$ \left\{\begin{array}{ll} -\Delta_{p(x)} u=Q(x)|u|^{r(x)-2}u, &\mbox{in}\ \Omega,\u=0, &\mbox{on}\ \partial \Omega, \end{array}\right. \eqno{0.1} $$ where $\Omega\subset\R^N$ is a smooth bounded domain, $1p^+$ and $Q: \overline{\Omega}\to\R$ is a nonnegative continuous function. We prove that (0.1) has infinitely many small solutions and infinitely many large solutions by using the Clark''s theorem and the symmetric mountain pass lemma.  相似文献   

14.
We give explicit formulas for the norm (or equivalently for the merit factors) of various sequences of polynomials related to the Fekete polynomials


where is the Legendre symbol. For example for an odd prime,


where is the class number of . Similar explicit formulas are given for various polynomials including an example of Turyn's that is constructed by cyclically permuting the first quarter of the coefficients of . This is the sequence that has the largest known asymptotic merit factor. Explicitly,


where denotes the nearest integer, satisfies


where


Indeed we derive a closed form for the norm of all shifted Fekete polynomials


Namely

and if .

  相似文献   


15.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

16.
Let u = (u n ) be a sequence of real numbers whose generator sequence is Cesàro summable to a finite number. We prove that (u n ) is slowly oscillating if the sequence of Cesàro means of (ω n (m−1)(u)) is increasing and the following two conditions are hold:
$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}  相似文献   

17.
二部图形式的Erd\H{O}s-S\''{o}s猜想  相似文献   

18.
Let $M^{n}(n\geq4)$ be an oriented compact submanifold with parallel mean curvature in an $(n+p)$-dimensional complete simply connected Riemannian manifold $N^{n+p}$. Then there exists a constant $\delta(n,p)\in(0,1)$ such that if the sectional curvature of $N$ satisfies $\ov{K}_{N}\in[\delta(n,p), 1]$, and if $M$ has a lower bound for Ricci curvature and an upper bound for scalar curvature, then $N$ is isometric to $S^{n+p}$. Moreover, $M$ is either a totally umbilic sphere $S^n\big(\frac{1}{\sqrt{1+H^2}}\big)$, a Clifford hypersurface $S^{m}\big(\frac{1}{\sqrt{2(1+H^2)}}\big)\times S^{m}\big(\frac{1}{\sqrt{2(1+H^2)}}\big)$ in the totally umbilic sphere $S^{n+1}\big(\frac{1}{\sqrt{1+H^2}}\big)$ with $n=2m$, or $\mathbb{C}P^{2}\big(\frac{4}{3}(1+H^2)\big)$ in $S^7\big(\frac{1}{\sqrt{1+H^2}}\big)$. This is a generalization of Ejiri''s rigidity theorem.  相似文献   

19.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号