首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用高分辨电子能量损失谱(HREELS)研究了甲酸在轻微氧化的Nb(110)表面(O/Nb原子比=0.2)上的吸附与分解,提出了相应的表面反应模式.140K时,低暴露量的甲酸在该表面解离生成甲酸根(HCOO),生成的甲酸根以单齿形式键合在Nb上,同时也有少量甲酸分解生成吸附态的CO;高暴露量时则生成多层物理吸附的固体甲酸.升温至~190K,物理吸附的甲酸脱附,此时的表面为单齿键合的HCOO和CO所覆盖.温度升至250~300K时,HCOO的吸附态由单齿式转变成桥式,同时表面吸附的CO分子消失.升温过程的HREELS表明HCOO的分解导致了Nb的氧化.暴露量较高时表面的甲酸根比较稳定以致于在540K的高温时仍不完全分解.  相似文献   

2.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

3.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附.TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的脱附温度在170 K.XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 e V.利用多层NO_2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997).TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+OH(a)=H_2O+HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO_2分子(2HCOO(a)=CO_2+HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中,Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+O(a)=H_2O+CO_2)和歧化反应(2HCOO(a)=CO_2+HCOOH)生成气相CO_2,H_2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+OH(a)=H_2O+HCOO(a))和216 K的羟基并和反应(OH(a)+OH(a)=H_2O+O(a)).  相似文献   

4.
应用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS),研究了Mn薄膜/Rh(100)上乙醇的吸附和分解,提出了表面吸附和分解的反应工,在300K时,蒸镀的Mn在清洁Rh(100)表面上以层层模式生长;在130-300K间,在25mLMn/Rh(100)表面上吸附20L乙醇的TDS结果与乙醇在Rh(100)表面上的结果一致在155K处,脱附出多层凝聚态吸附的乙醇;升温到255K,脱附出H2和CH4,继续升温,出现了与乙醇在R (100)表面上不一致的现象,在470K,同时出现了第2个H2和CH4的脱附峰,在500K,脱附极少量的CO;在950K附近,脱附出大量CO。  相似文献   

5.
 用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS)研究了乙酸在Rh(100)表面上的吸附和分解,提出了乙酸吸附和分解反应的模式.130K时,高暴露量的乙酸在Rh(100)表面上形成多层吸附的凝聚态乙酸.升温至290K时,部分乙酸以分子形式直接脱附,另一部分乙酸分子通过O—H键断裂形成乙酸根和氢吸附在表面上;在升温至400K的过程中,乙酸根在表面发生两个相互竞争的反应,即乙酸根分解成CO,CHx,O和H,以及乙酸根分解成CHx,H和CO2;升温至500K,只剩下CHx,O和CO吸附在表面上;600K后,表面吸附的CHx完全解离,同时表面吸附的碳原子和氧原子结合成CO脱附.  相似文献   

6.
汪信  忻新泉  戴安邦 《催化学报》1986,7(3):243-249
研究了负载型甲酸镍在氦气中的热分解。根据峰温和分解产物可以把分解峰分成分别代表五种表面化合物的热分解:α峰,甲酸镍与载体的相互作用很弱,其热行为类似于纯盐;β峰,载体表面羟基与甲酸镍的Ni~(2+)直接作用,具有较高的热稳定性;γ峰,HY沸石表面的H~+与甲酸根作用;ε峰,在MgO表面,从Ni~(2+)解离的甲酸根与Mg~(2+)的作用;η峰,为CO_2在La_2O_3表面的脱附峰。  相似文献   

7.
 利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.  相似文献   

8.
作为便携式电子设备的动力源,直接甲酸燃料电池(DFAFC)具有燃料跨界范围小、电动势大、甲酸无毒、低温下功率密度大等优点,因而引起了人们的极大兴趣.DFAFC商业化的主要挑战之一是阳极电催化剂材料的高成本和低CO耐受性.阳极通常需要高负载的贵金属电催化剂(Pt或Pd)氧化甲酸(HCOOH)以获得所需的电能.完全电氧化甲酸在Pt和Pd表面上会产生强吸附的CO,从而降低了Pt或Pd催化剂的活性.Pt和Pd储量少且价格昂贵,减少Pt和Pd含量且保持催化性能的燃料电池催化剂一直是研究者的奋斗目标.本文用周期性密度泛函理论(DFT)系统地研究了WC负载的单分子层Pd(Pd/WC(0001))催化剂对甲酸的分解机理,这可为所需的反应路径设计、筛选催化剂提供指导.Trans-HCOOH通过C-H,O-H,C-O键的活化发生分解.关于吸附,确定了可能反应中间体的最稳定吸附构型.trans-HCOOH,HCOO,mHCOO,cis-COOH,trans-COOH,CO,H2O,OH和H的吸附过程是化学吸附,而cis-HCOOH和CO2与Pd/WC(0001)表面的相互作用较弱,是物理吸附.此外,提出了trans-HCOOH分解的不同途径来探索分解机理.trans-HCOOH中O-H,C-H和C-O键的活化能垒分别为0.61,0.77和1.05 eV,O-H键断裂的能垒最小,则trans-HCOOH优先通过O-H键断裂生成HCOO.双齿HCOO是HCOOH分解的主要中间体,它可以转变为单齿HCOO,这条路线生成CO2的能垒比双齿HCOO的低0.04 eV.CO2是HCOO主要解离产物,这一步是总反应的决速步骤.对于cis-COOH和trans-COOH,CO是其主要解离产物.此外,trans-HCOOH也能直接生成CO,但克服的能垒较大.在Pd/WC(0001)表面上分解trans-HCOOH的最有利途径是HCOOH→HCOO→CO2,其中HCOO脱氢形成CO2的步骤是速率决定步骤.本文提供了HCOOH在Pd/WC(0001)表面上分解的活性中间体、能垒和机理的推测,CO形成主要是通过cis-COOH、trans-COOH及HCO的分解,CO2的形成主要是通过HCOO的分解,CO2占主导.该结论与Pd(111)面上甲酸分解结果一致,说明WC作为Pd载体没有改变Pd对甲酸的催化性能,但降低了Pd的使用量.综上,本文阐明了WC负载单分子层Pd催化剂上甲酸催化分解机理,得出甲酸分解的最佳反应路径,为直接甲酸燃料电池设计低贵金属含量、高活性的负载型Pd催化剂提供了理论指导;可用于预测不同载体负载Pd催化剂的性能,大大减少实验成本,以验证提出的实验假设.  相似文献   

9.
研究小分子羧酸在过渡金属和金属氧化物表面上的吸附和分解,可提供有关反应途径和过渡吸附态的丰富信息.Trillo 等对甲酸在金属氧化物上分解作了较系统的研究.我们利用XPS方法研究了甲酸和乙酸在多晶铁表面上的吸附和分解,表明在低酸覆盖度时,铁表面具有较强断裂C-O键能力,生成RCO(a):增大覆盖度时,则主要生成 RCOO(a).本文报导利用 XPS方法研究甲酸和乙酸在预氧化的铁表面上吸附和分解的结果.  相似文献   

10.
 用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS)研究了\r\n乙酸在SmOx/Rh(100)模型表面上的吸附与分解.结果表明:低温下\r\n吸附乙酸时,SmOx的加入明显促进了乙酸分子中O-H键的断裂,从而有\r\n利于乙酸根的形成;升高表面温度,SmOx的存在促进了乙酸根中C-C键\r\n的断裂,有利于乙酸根的进一步分解.120K时,乙酸在SmOx/Rh(100\r\n)上主要以乙酸根的形式存在.225K时,乙酸根即可发生以生成CO为主\r\n的脱羧反应.在417和477K观察到受表面脱羧反应控制的CO2和H2的脱附\r\n峰.对反应的机理进行了讨论.  相似文献   

11.
用高分辨电子能量损失谱 ( HREEL S) ,研究了 Rh( 10 0 ) c( 2× 2 ) Mn表面合金的氧化及 CO在清洁和氧化表面合金上的吸附 .结果表明 ,在 Rh( 10 0 ) c( 2× 2 ) Mn氧化过程中 ,发生 Mn的偏析 ,Mn被氧化生成 Mn O薄层 .Mn- O- Rh间的强相互作用 ,使部分锰氧化物在 12 0 0 K下存在于 Rh( 10 0 )表面 .若这种表面在 70 0~ 80 0 K继续被氧化 ,可得到 Mn O1 + x/ Rh( 10 0 ) ;Mn O1 + x/ Rh( 10 0 )在 5 0 0~ 60 0 K还原后生成 Mn O/ Rh( 10 0 ) . CO吸附于Rh ( 10 0 ) c( 2× 2 ) Mn中 Rh原子的顶位 ,C- O键级比清洁 Rh( 10 0 )顶位吸附的 CO键级略低 . Mn O/ Rh( 10 0 )和Mn O1 + x/ Rh( 10 0 )上 CO吸附于经还原的、未被锰氧化物覆盖的 Rh( 10 0 )区域 ,CO与锰氧化物间可发生相互作用 .  相似文献   

12.
用程序升温脱附(TPD)和俄歇电子能谱(AES)在80~773K范围内研究了甲硫醉在Ni(100)面上的脱附和分解.结果表明:当甲硫醇暴露度≤3L时(1L=1.33×10~4Pa.S),甲硫醇在表面分解的脱附产物为氢和甲烷;甲硫醇暴露度≤4L时,除有表面反应生成的氢和甲烷脱附外还伴随有甲硫醇的脱附.AES测量表明,由甲硫酸分解产生的硫原子被强吸附在Ni(100)面上,并对Ni(100)面起化学改性的作用.在甲硫醇暴露度为0.5~3L范围内,滞留在表面的强吸附硫量随甲硫醇的暴露度成正比增加.当甲硫醇暴露度等于10L时,强吸附硫量接近饱和值.表面硫的存在对甲硫醇在Ni(100)面上的反应和吸附性能有明显的影响,硫化学改性的主要作用是阻塞了Ni(100)面上的四重穴中心,降低了Ni(100)面对C-H键、C-S键、和S-H键的裂解活性.  相似文献   

13.
利用X射线光电子能谱(XPS)和紫外光电子能谱(UPS)等表面分析方法,表征了甲酸和乙酸在ZrO2表面 的反应和吸附态。室温下,甲酸在ZrO2表面以HCOO-(a)的形态被吸附,部分HCOO-(a)进一步分解产生O~(2-)(a), HCO(a)和CH_x(a),加热有利于表面甲酸根的分解。乙酸在ZrO2表面的反应与甲酸相似。甲酸和乙酸在ZrO2表面 的吸附实质就是表面酸碱中和反应。  相似文献   

14.
众多的研究表明甲酸在氧化物催化剂上的吸附分解与催化剂的表面酸碱性质有关。研究吸附相甲酸物种的变化表明甲酸分解反应的选择性除受温度影响外,还与甲酸的表面覆盖度有关。Z_rO_2表现为较典型的弱酸弱碱双功能性催化剂。最近我们的研究表明Z_rO_2表面存在表面键诱导酸-碱相互作用,它的酸-碱双功能催化作用在烷基胺分解转化为腈的反应中得到了较好地体现。本文报导Z_rO_2催化剂上吸附甲酸的程序升温脱附(TPD)和红外光谱(IR)研究结果。  相似文献   

15.
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

16.
制备了一种基于2,7-萘二酚衍生物的双核锌配合物Zn-2L,在水溶液中(HEPES 0.01 mol·dm3,pH=7.4)Zn2L与指示剂邻苯二酚紫(PV)构筑成一种比色化学传感体系(CE)。该化学传感体系对草酸根具有良好的选择性识别作用,向CE溶液中加入草酸根引起溶液颜色由蓝色变为黄色。除丙二酸根对草酸根的识别具有轻微干扰外,其他二元酸离子包括邻苯二甲酸根,间苯二甲酸根,对苯二甲酸根,丁二酸根,戊二酸根,己二酸根对草酸根的识别无明显干扰。  相似文献   

17.
采用TPD技术考察了Cu/MgO催化剂表面NO的脱附和分解。载体MgO表面有两类NO吸附中心,为MgO表面碱中心。负载Cu后,由于Cu覆盖了MgO表面碱中心,使Cu/MgO(>1%)催化剂表面只有吸附在Cu上的NO。热脱附过程伴有明显的分解,产物为N~2,N~2O和O~2。CO-NO反应低温有利于N~2O生成,而高温有利于N~2生成,反应活性与NO-TPD峰温有较好的对应关系。NO在催化剂表面解离(NO~a→N~a+O~a)是CO-NO反应的速控步。  相似文献   

18.
利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2 在Ag/Pt(110)双金属表面发生解离吸附, 生成NO(ads)和O(ads)表面吸附物种. 在升温过程中NO(ads)物种发生脱附或者进一步分解. 500 K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种. Pt 向Ag传递电子, 从而削弱Pt-O键的强度, 降低O(ads)从Pt 表面的并合脱附温度. 发现能够形成具有稳定组成的Ag/Pt(110)合金结构, 其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力, 但与O(ads)的结合明显弱于Pt(110)-(1×2). 该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构.  相似文献   

19.
用高分辨电子能量损失谱(HREELS),热脱咐谱(TDS)在140K—700K温度范围内研究了清洁和氧改性Pd(100)面上CH_3OH的吸咐与分解机理。HREELS结果表明:在140K吸咐甲醇能形成分子吸咐层;当加热甲醇分子层时,甲醇在185K先分解为CH_3O_(ad)和H_(ad),在200K以上温度CH_3O_(ad)逐步分解为CO_(ad)和H_(ad);预吸咐氧后表面有甲酸物种生成。TDS研究表明;除有少量甲醇在185K脱咐外,甲醇分解的主要脱咐产物为H_2(320K)和CO(440K);次要脱附产物为甲烷(200K—210K)。综合HREELS和TDS研究指出,在清洁表面甲醇主要通过O—H键断裂,经甲氧基中间物种分解为CO和H_2,还有部分甲醇通过C—O键断裂分解为甲烷,预吸附氧后甲醇的分解除了存在以上两种方式外,氧的存在一方面能够转移CH_3O_(ad)中的氢原子在表面形成一定量的甲酸中间物种,另一方面能够稍许提高少量CH_3O_(ad)的热稳定性。  相似文献   

20.
利用X射线光电子能谱和程序升温脱附谱研究了NO在清洁和预吸附氧的Cu(111)表面上的吸附和反应.通过改变NO的暴露量和退火温度,在Cu(111)表面可以制备出不同种类的化学吸附氧物种,其O 1s的结合能分别位于531.0 eV (O531)和529.7 eV (O529).表面O531物种的存在对NO的不同吸附状态有着显著影响,同时使得大部分NO吸附分子(NO(a))在加热过程中发生分解并以N2O和N2形式脱附; 而表面O529物种对NO(a)的解离脱附有着明显的抑制作用.相对于O531物种来说,O529物种对NO吸附表现出更强的位阻效应.上述结果表明,NO在Cu(111) 表面的吸附和分解行为与预吸附氧物种的种类和覆盖度密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号