首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Lithium ions are widely used in many scientific fields; in order to get these ions, it is necessary to study lithium plasma process thoroughly. Recently, a hybrid 7Li3+ ion source has been designed and tested at Peking University (PKU). To understand the lithium plasma behaviour inside the plasma chamber and to provide some guidelines for ion source optimization to generate 7Li3+, a numerical model based on the plasma equilibrium equations is developed in this work, which is helpful not only for our ion source, but also for understanding the physical process of lithium plasma from ECR ion sources with different frequencies. This model can describe the density and fraction of lithium ions in various system parameters. The dependences of the Li+, Li2+, and Li3+ ion density and fraction on electron temperature, gas pressure, microwave power, surface ionizer, and the magnetic field are investigated systematically.  相似文献   

2.
研制成功了一台新的高电荷态ECR离子源,该离子源主要为原子物理实验提供各种高电荷态离子束流,是基于中国科学院近代物理研究所14.5GHz高电荷态ECR离子源设计建成的,同时在该离子源中应用多种有利于提高束流强度的技术,设计时考虑到采用双频加热,试图通过试验双频加热模式来提高高电荷态离子的产额,并设计建造了一套束流聚焦分析系统,以提高电荷态分辨率和束流传输效率.  相似文献   

3.
A new plasma chamber for the Texas A&M 14.5GHz ECR ion source ECR2 has been recently installed and the beam analysis line has been recently upgraded with the replacement of the solenoid with a shorter Glaser lens.The source is now used along with the 6.4GHz ECRl for injection of beams into the K500 cyclotron.The new plasma chamber incorporates water-carrying copper tubes,each with an inner diameter of 0.7mm and all outer diameter of 1.8mm.interposed between the NbFeB permanent magnets and the aluminum plasma-chamber wall.The design allows for a much higher water flow and thus better cooling than the previous design,which used a thin,water-cooled liner.The source commissioning and operation is described.  相似文献   

4.
使用电子枪对ECR(Electron Cyclotron Resonance)等离子体注入外电子束是继铝衬弧腔、偏压盘之后,对等离子体电子的额外补充的又一种手段,通过向弧腔中注入一定能量与流强的电子束,以期提高引出束流的流强与电荷态。但由于该方法可控参数繁多,经验积累与报道资料都很少,且设计与操作远不如偏压盘等手段简便,故一直未能得到深入研究。通过以三维仿真软件CST粒子工作室对注入到弧腔电子束的运动轨迹的模拟结果为依据、以18 GHz ECR蒸发冷却源为平台,进行了ECR等离子体注入电子束的实验,结果表明:在一定实验条件下,当注入电子束能量超过1 800 eV时,会产生一种引出的离子束流的激增现象。在这个现象中,脉冲与直流的流强均比未注入电子时要高,束流电荷态向高价方向移动,且可通过控制实验条件来控制这种现象。最后对于这种电子并未通过共振面,却能起到提高电荷态与流强的作用进行了分析与讨论,并认为该现象在改善直流束与脉冲束性能的方面都有着积极的意义。The injection of the electron beam into the ECR (Electron Cyclotron Resonance)plasma by electron gun is a new method for the additional supplementary of the plasma electron, following the aluminum chamber wall and the bias plate, we are expecting for the higher current and charge state of the ion beam with it. However, because of the controllable parameter's variety, the lack of the accumulation of experience and data, and the shortage of convenience in designing and experimental practicing compared by biased disk and other means,it has always not been intensively studied. In this article, we take the 18 GHz ECR Ion Source using evaporative cooling technique as experimental platform, do the experiment of injecting electron into ECR plasma base on the simulation result of the electron beam's path in ECR's chamber by the 3D simulation software CST the particle studio. It shows that a pulsing leap of the current of the extracting ion beam appears when the injecting electron's energy is above 1 800 eV. In the mean time, the top of the pulse and the average current of the ion beam rises, the ionization state moves to a higher level. This phenomenon can be turned on and off by controlling the experimental condition. At the last part of the article, we discuss this improvement of the current and charge state of the ion beam despite of the position's missing between the injection of electron beam and the resonance surface, and hold the opinion that this phenomenon is positive to both pulsed and direct beam.  相似文献   

5.
A compact 14.5GHz electron cyclotron resonance (ECR) ion source for the production of slow, multiply charged ions has been constructed,with the plasma-confining magnetic field produced exclusively by permanent magnets.Microwave power of up to 175W in the frequency range from 12.75 to 14.SGHz is transmitted from ground potential via a PTFE window into the water-cooled plasma chamber which can be equipped with an aluminum liner.The waveguide coupling system serves also as biased electrode,and two remotely-controlled gas inlet valves connected via an insulating break permit plasma operation in the gas- mixing mode.A triode extraction system sustains ion acceleration voltages between 1kV and 10kV.The ECR ion source is fully computer-controlled and can be remotely operated from any desired location via Ethernet.  相似文献   

6.
ECR离子源中的微波功率在线测量   总被引:1,自引:1,他引:0       下载免费PDF全文
 在中子发生器中采用ECR离子源是一种新技术。由于受结构的限制,ECR离子源不能像高频源离子源那样通过观察气体放电的颜色判断其工作状态,所以在运行中调节状态非常困难。解决这个问题的方法是:用定向耦合器加微波小功率计的方法在线测量ECR离子源的微波入射功率,通过微波入射功率可以直接得到ECR离子源引出离子束流的大小,从而推断微波信号源的放电过程是否正常,然后调整ECR离子源,最终使中子发生器工作在最佳状态。从ECR离子源后面的引出电极测得的最大束流为20 mA,且工作长时间稳定,当微波功率在160 W~500 W之间时,放电效果较好,离子束流随微波功率的增加而增加。  相似文献   

7.
Spatially resolved optical emission spectroscopy (SR-OES) was used to investigate microwave activated H2/Ar/CH4 plasma under conditions of the electron cyclotron resonance (ECR). The chemistry and composition of the gas phase were studied using self-designed fibre-optic system with echelle type spectrometer during CVD deposition of polycrystalline diamond. One-dimensional intensity profiles of the main species were collected along the vertical axis of chamber. The dominant species in the flux, originating from excited hydrogen and hydrocarbons, were identified as H, H+, CH and CH+; they are crucial for the diamond deposition process. The effect of ECR on the spatial distribution of H2 and CH4 dissociation profiles was studied in depth. The influence of processing parameters (gas flow rates, input power, pressure and magnetic field level) on species excitation as a function of the distance above substrate was asessed. The obtained data can be used for the ECR system optimization.  相似文献   

8.
A heating method for partially ionized plasma has been described in reference [V.E. Moiseenko, Sov. J. Plasma Phys. 12, 427 (1986)]. It exploits the collisional damping of fast waves that is large owing to the high rate of charge exchange collisions. Since the time of heating is limited by the duration of neutral gas ionization, the heating needs to be strong enough to achieve a high final ion temperature. This heating method has been studied numerically in the framework of MHD-like (magneto-hydrodynamic) equations in inhomogeneous cylindrical plasma. The influences of the ratio of the mean free path of the neutral atoms to the plasma radius, the initial ion concentration, the characteristics of the interaction of the neutral atoms with the chamber wall and other parameters on the plasma heating dynamics are examined. A scenario for RF plasma heating in one central cell of the multi-mirror device GOL3 (Novosibirsk, Russia) is developed, in which the final ion temperature exceeds the ion oscillation energy in the RF field by one order of magnitude. The energy efficiency is high; only a small portion of the power is transferred by the neutral atoms to the chamber wall.  相似文献   

9.
A new type of pulse sources of multicharged ions,namely,a quasi-gasdynamic ECR source is propose.Its main difference from the classical ECR ion sources is a different,quasi-gasdynamic regime of plasma confinement in a magnetic trap.A zero-dimensional model was constructed that describes gas breakdown, formation of charge state distribution in a plasma,and plasma flux through the plugs of the trap.A wide spectrum of model experimental studies was covered.Plasma was produced and heated by a pulse(1ms) gyrotron at the frequency of 37.5GHz and power of 100kW in a cusp magnetic trap with magnetic field in plugs up to 2.5T.Such a trap has axisymmetric configuration and allows one to realize a quasi-gasdynamic regime of confinement with reliable stabilization of MHD perturbations.It was demonstrated that with such a confinement regime it is possible to generate multicharged ions and create intense(more than 1A/cm~2)ion fluxes through the trap plugs.Comparison of results of calculations and data of experiments shows that they are in a good agreement,which allows us to predict with a high degree of certainty creation of an ECR source of a new generation. The data obtained were used to design a pulse quasi-gasdynamic ECR ion source with pumping at the frequency of 100GHz,effective trap size lm,average ion charge in plasma comparable with that in the best classical MCI ECR sources but with an order of magnitude higher flux density and absolute magnitude of plasma flux through trap plugs.Creation of intense plasma fluxes allows one to extract high-current MCI beams of high brightness.Transverse homogeneity of a plasma flux makes it possible to use multi-aperture extraction system for formation on broad intense MCI beams.  相似文献   

10.
汤明杰  杨涓  金逸舟  罗立涛  冯冰冰 《物理学报》2015,64(21):215202-215202
微型电子回旋共振(ECR)离子推力器可满足微小航天器空间探测的推进需求. 为此, 本文开展直径20 mm的微型ECR离子源结构优化实验研究. 根据放电室内静磁场和ECR谐振区的分布特点, 研究不同微波耦合输入位置对离子源性能的影响, 结果表明环形天线处在高于ECR谐振强度的强磁场区域时, 微波与等离子体实现无损耦合, 电子共振加热效果显著, 引出离子束流较大. 根据放电室电磁截止特性, 结合微波电场计算, 研究放电容积对离子源性能的影响, 实验表明过长或过短的腔体长度会导致引出离子束流下降甚至等离子体熄灭. 经优化后离子源性能测试表明, 在入射微波功率2.1 W、氩气流量14.9 μg/s下, 可引出离子束流5.4 mA, 气体放电损耗和利用率分别为389 W/A和15%.  相似文献   

11.
The high charge state all permanent Electron Cyclotron Resonance Ion Source(ECRIS)LAPECR2 (Lanzhou All Permanent magnet ECR ion source No.2)has been successfully put on the 320kV HV platform at IMP and also has been connected with the successive LEBT system.This source is the largest and heaviest all permanent magnet ECRIS in the world.The maximum mirror field is 1.28T(without iron plug)and the effective plasma chamber volume is as large as (?)67mm×255mm.It was designed to be operated at 14.5GHz and aimed to produce medium charge state and high charge state gaseous and also metallic ion beams.The source has already successfully delivered some intense gaseous ion beams to successive experimental terminals.This paper will give a brief overview of the basic features of this permanent magnet ECRIS.Then commissioning results of this source on the platform,the design of the extraction system together with the successive LEBT system will be presented.  相似文献   

12.
The paper is devoted to the investigation of the electron cyclotron resonance (ECR) discharge in the decreasing magnetic field in the pressure range from 0.02 Pa to 90 Pa and the absorbed microwave power from 50 W to 400 W. For a discharge characterization we used the floating potentialU fl and the saturated ion current densityi sat + . The influence of the substrate holder presence on the plasma microparameters was studied. It was shown that for the substrate holder located near ECR at pressures below 0.3 Pa mainly the magnitude ofU fl strongly depends on the pressurep, the absorbed microwave powerP a, and the position of the substrate holder with respect to ECR. The values ofU fl in the plasma in which the substrate holder is inserted strongly differ from those in the plasma without the substrate holder.U fl of low pressuresp<0.05 Pa achieves high positive values of about +50 V and this results in sputtering of chamber walls.  相似文献   

13.
Roland Repnow 《Pramana》2002,59(5):835-848
A specialized rf-accelerator system HSI consisting of two RFQ’s and 8 rf seven-gap cavities was built for injection of high intensities of singly charged heavy ions into the Heidelberg heavy ion storage ring TSR. With different ion sources, this system now is used to deliver positive or negative, atomic and molecular ion beams with energies between 150 keV/a.m.u. and 5.3 MeV/a.m.u. final energy. For a future replacement of the MP-tandem-postaccelerator-system the new HSI-accelerator is to be equipped with an ECR source for high intensities of highly charged ions. An advanced commercial ECR source with a 18 GHz rf klystron and an adjustable extraction system for adaption of a wide range of injection energies has been commissioned at the manufacturer and is delivered. Test bench operation presently is in preparation at Heidelberg. A stripper section with an achromatic charge state selector is under construction between injector and postaccelerator. Other ion sources, e.g., for ultra cold H 3 + molecular ion beams are under development.  相似文献   

14.
A stationary UHF plasma source, its characteristics and possibility of filling open magnetic trap with plasma injected from it have been described. Plasma is created in the source at frequency of 2400 MHz (supplied power is up to 150 W) in the electron cyclotron resonance (ECR) regime under working gas pressure 10–5–10–2 Torr. By changing discharge conditions one can change the injected plasma density from 109 to 1012 cm–3, at the temperatureT e=2–10 eV. The possibility of efficient plasma injection from the source into the open magnetic trap of various configurations is shown experimentally. Plasma characteristics in the trap are presented under various experimental conditions. It is established that plasma parameters can be easily changed in the trap.  相似文献   

15.
Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.  相似文献   

16.
A quartz-chamber 2.45 GHz electron cyclotron resonance ion source(ECRIS) was designed for diagnostic purposes at Peking University [Patent Number: ZL 201110026605.4]. This ion source can produce a maximum 84 m A hydrogen ion beam at 50 k V with a duty factor of 10%. The root-mean-square(RMS) emittance of this beam is less than 0.12π mm mrad. In our initial work,the electron temperature and electron density inside the plasma chamber had been measured with the line intensity ratio of noble gases. Based on these results, the atomic and molecular emission spectra of hydrogen were applied to determine the dissociation degree of hydrogen and the vibrational temperature of hydrogen molecules in the ground state, respectively. Measurements were performed at gas pressures from 4×10~(-4) to 1×10~(-3) Pa and at input peak RF power ranging from 1000 to 1800 W. The dissociation degree of hydrogen in the range of 0.5%-10% and the vibrational temperature of hydrogen molecules in the ground state in the range of 3500-8500 K were obtained. The plasma processes inside this ECRIS chamber were discussed based on these results.  相似文献   

17.
An intense laser radiation (1012 to 1011 W/cm−2) focused on the solid target creates a hot (≥1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ=0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼1011 W/cm−2.  相似文献   

18.
The exchange charge model of crystal field theory has been used to analyze the ground and excited state absorption of tetrahedrally coordinated Cr4+ ion in lithium aluminum oxide LiAlO2 (γ-phase) and lithium dioxogallate LiGaO2. The parameters of the crystal field acting on the Cr4+ ion are calculated from the crystal structure data, taking into account the crystal lattice ions located at distances up to 12.744 Å in LiGaO2 and 13. 180 Å in LiAlO2. The obtained energy level schemes were compared with experimental ground and excited state absorption spectra and literature data on the application of other crystal field models (the angular overlap model and Racah theory) to the considered crystals; a good agreement with experimental data is demonstrated.  相似文献   

19.
A method of formation and heating of CO2 as a test gas in the settling chamber of a hotshot wind tunnel is considered. To form and heat CO2, the chamber is filled with a source gas mixture of CO, O2, and CO2, and after initiation, these substances participate in an exothermic chemical reaction in accordance with the formula CO + 0.5 O2 + xCO2 = (1 + x)CO2. A stoichiometric ratio of the concentrations of carbon monoxide CO and oxygen is used. Variation of the number of moles x of ballast CO2 in the left part of the chemical formula allows changing the temperature of the resultant test gas in a wide range. Experiments in the IT-302M hotshot wind tunnel carried out at ITAM SB RAS have shown that a pressure increase during an isochoric process in the settling chamber due to the joint effect of heat released in the reaction CO + 0.5 O2 and an electric charge provides the completeness of CO combustion almost equal to unity. The time of reaction completion at its initiation by an electric arc is no more than several milliseconds.  相似文献   

20.
Recently electron cyclotron resonance (ECR) plasma have been explored for wafer cleaning applications, since it is known to do less damage to silicon surface than conventional plasma. Organic contaminants removal efficiency and plasma radiation damage of the ECR plasma cleaning have been investigated. In oxygen ECR plasma cleaning, the plasma exposure time needed to remove the organic contaminants on the silicon surface down to the detection limit is 40 s, but the one to reach the lowest surface roughness is 10 s. The leakage current level of the MOS capacitor made using the Si substrate exposed to oxygen ECR plasma for 40 s is 8 × 10−9 A. The optimum exposure time determined by considering the contaminants removal efficiency and the plasma radiation damage (or the leakage current level) is 40 s. Organic contaminants seem to be removed through both sputter-off mechanism by oxygen ion bombardment and evaporation mechanism by chemical reactions with excited oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号