首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
马姣民  梁艳  郜小勇  陈超  赵孟珂  卢景霄 《物理学报》2012,61(5):56106-056106
Ag2O薄膜在新型超高存储密度光盘和磁光盘方面具有潜在的应用前景.利用射频磁控反应溅射技术, 通过调节衬底温度在沉积气压为0.2 Pa、氧氩比为2:3的条件下制备了一系列Ag2O 薄膜.利用通用振子模型(包括1个Tauc-Lorentz振子和2个Lorentz 振子)拟合了薄膜的椭圆偏振光谱.在1.5-3.5 eV能量区间,薄膜的折射率在2.2-2.7之间, 消光系数在0.3-0.9之间. 在3.5-4.5 eV能量区间,薄膜呈现了明显的反常色散,揭示Ag2O薄膜的等离子体振荡频率在 3.5-4.5 eV之间. 随着衬底温度的升高,薄膜的光学吸收边总体上发生了红移, 该红移归结于薄膜晶格微观应变随衬底温度的升高而增大. Ag2O薄膜的光学常数表现出典型的介质材料特性.  相似文献   

2.
生长条件和退火对金刚石薄膜光学性质的影响   总被引:2,自引:1,他引:1  
提出一种分析微波等离子体化学气相沉积工艺条件对金刚石薄膜的组成和光学性质影响的方法。采用红外椭圆偏振光谱仪来分析Si衬底上金刚石薄膜的组成和光学性质,研究微波等离子体化学气相沉积法生长条件和退火工艺对金刚石薄膜的消光系数和折射率的影响。实验表明金刚石薄膜中存在C—H、C=C、O—H和C=O键,生长条件对薄膜中C—H和C=C键的含量及薄膜的折射率影响较大;薄膜经过退火后薄膜的光学性质得到明显改善。  相似文献   

3.
采用化学溶液方法在(111)Pt/Ti/SiO2/Si衬底上制备了Bi3.25La0.75Ti3O12(BLT)和Bi3.25Nd0.75Ti3O12(BNT)薄膜.x射线衍射测试表明,两种薄膜都为单一的层状钙钛矿结构.扫描电子显微镜分析显示,BNT薄膜由大而均匀的棒状晶粒组成,BLT薄膜的组成晶粒则较小.采用紫外一近红外椭圆偏振光谱仪测试了200-100nm波长范围的椭圆偏振光谱,拟合得到薄膜的光学常数(折射率和消光系数)和厚度,确定BLT薄膜的禁带宽度分别为4.30和3.61eV,并采用单电子振子模型分析了薄膜在带间跃迁区的折射率色散关系.  相似文献   

4.
基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数   总被引:2,自引:0,他引:2       下载免费PDF全文
梁丽萍  郝建英  秦梅  郑建军 《物理学报》2008,57(12):7906-7911
基于溶胶凝胶ZrO2薄膜的紫外/可见/近红外透射实验光谱,采用Swanepoel方法结合Wemple-DiDomenico色散模型,方便地导出了ZrO2薄膜在200—1200nm波长范围内的光学常数,包括折射率、色散常数、膜层厚度、吸收系数及能量带隙.研究发现,溶胶凝胶ZrO2薄膜具有高折射率(1.63—1.93,测试波长为632.8nm)、低吸收和直接能量带隙(4.97—5.63eV) 等光学特性,而且其光学常数对薄膜制备过程中的重要工艺 关键词: 光学常数 Swanepoel方法 2薄膜')" href="#">ZrO2薄膜 热处理  相似文献   

5.
采用化学溶液方法在(111)Pt/Ti/SiO2/Si衬底上制备了Bi3.25La0.75Ti3O12(BLT)和Bi3.25Nd0.75Ti3O12(BNT)薄膜.x射线衍射测试表明,两种薄膜都为单一的层状钙钛矿结构.扫描电子显微镜分析显示,BNT薄膜由大而均匀的棒状晶粒组成,BLT薄膜的组成晶粒则较小.采用紫外-近红外椭圆偏振光谱仪测试了200-1700nm波长范围的椭圆偏振光谱,拟合得到薄膜的光学常数(折射率和消光系数)和厚度,确定BLT和BNT薄膜的禁带宽度分别为4.30和3.61eV,并采用单电子振子模型分析了薄膜在带间跃迁区的折射率色散关系.  相似文献   

6.
金刚石薄膜的红外椭圆偏振光谱研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用红外椭圆偏振光谱对微波等离子体化学气相沉积法(MPCVD)和热丝化学气相沉积法(H-FCVD)制备的金刚石薄膜在红外波长范围(2.5—12.5μm)的光学参数进行了测量.建立了不同的光学模型,且在模型中采用Bruggeman有效介质近似方法综合考虑了薄膜表面和界面的椭偏效应.结果表明,MPCVD金刚石膜的椭偏数据在模型引入了厚度为77.5nm的硅表面氧化层、HFCVD金刚石膜引入879nm粗糙层之后能得到很好的拟合.最后对两种模型下金刚石薄膜的折射率和消光系数进行了计算,表明MPCVD金刚石薄膜的红外 关键词: 金刚石薄膜 红外椭圆偏振光谱 光学参数 有效介质近似  相似文献   

7.
射频磁控反应溅射氮氧化硅薄膜的研究   总被引:1,自引:0,他引:1  
朱勇  顾培夫  沈伟东  邹桐 《光学学报》2005,25(4):67-571
利用SiOxNy薄膜光学常数随化学计量比连续变化的特性,给出了制备折射率连续可调的SiOxNy薄膜的实验条件。用磁控反应溅射法制备了不同氮氧比的SiOxNy薄膜。研究了不同气流比率条件下薄膜光学常数、化学成分及溅射速率等的变化。用UV-VIS光谱仪测试了透射率曲线,利用改进的单纯型法拟合透射率曲线计算得到了折射率和消光系数。测试了红外傅立叶光谱(FTIR)曲线和X光光电子能谱(XPS)分析了薄膜成分的变化。实验表明薄膜特性与N2/O2流量比率密切相关,通过控制总压和改变气体流量比可控制SiOxNy薄膜的折射率n从1.92到1.46连续变化,应用Wemple-DiDomenico模型计算出光子带隙在6.5eV到5eV之间单调变化。  相似文献   

8.
斜角入射沉积法制备渐变折射率薄膜的折射率分析   总被引:2,自引:0,他引:2       下载免费PDF全文
斜角入射沉积法是一种制备薄膜的新颖方法,它可以用来制备渐变折射率薄膜.本文首先探讨了膜料的沉积入射角为α,薄膜柱状生长倾斜角为β时的薄膜的填充系数;之后利用drude理论,分析研究了斜角入射沉积法制备渐变折射率薄膜的折射率与薄膜的入射角和生长方向的关系. 关键词: 斜角入射沉积 渐变折射率 填充系数  相似文献   

9.
离子束反应溅射沉积SiO2薄膜的光学特性   总被引:1,自引:0,他引:1  
 主要研究采用离子束反应溅射(RIBS)制备SiO2薄膜的折射率、消光系数、化学计量比与氧气在氩氧混合工作气体中含量及其沉积速率的关系。研究结果表明:RIBS制备的SiO2薄膜在0.63 μm处折射率n= 1.48,消光系数小于10-5;随着沉积速率的增加,薄膜的折射率和消光系数随之变大,当沉积速率超过0.3 nm/s,即使是在纯氧环境溅射,折射率值也不低于1.5;通过对红外透射光谱的主吸收峰位置研究得到沉积的SiO2薄膜为缺氧型,化学计量比不超过1.8,且红外吸收峰位置和SiO2折射率存在对应关系,因此在不加热衬底情况下使用RIBS制备SiO2薄膜时,会限制沉积速率的提高。  相似文献   

10.
共蒸法制备非均匀膜的速率控制分析   总被引:4,自引:2,他引:2  
渐变折射率薄膜,又称为非均匀膜。利用德鲁德理论分析了混合介质膜的介电常量与各个膜料的介电常量之间的关系,介绍了共蒸法制备非均匀膜的制备机理。对混合膜的沉积速率为两种膜料的沉积速率之和的情况,分别从两种膜料的单分子体积是否相等和总的沉积速率是否为常数两个方面,探讨了双源共蒸法制备的非均匀膜的折射率分布规律与膜料的沉积速率之间的关系,并给出了几种常见的折射率分布如线性变化、正弦变化、指数变化和双曲变化规律的膜料沉积速率表达式。最后以混合介质膜的总沉积速率为常数、折射率按照线性变化为例进行了说明。  相似文献   

11.
SrTiO3 thin films were prepared on a fused-quartz substrate by pulsed laser deposition (PLD). Dense and homogeneous films with a thickness of 260 nm were prepared. Optical constants (refractive index n and extinction coefficient k) were determined from the transmittance spectra using the envelope method. The optical band gap energy of the films was found to be 3.58 eV, higher than the 3.22 eV for bulk SrTiO3, attributable to the film stress exerted by the substrate. The dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The refractive index and the packing density for the PLD-prepared SrTiO3 thin films are higher than those for the SrTiO3 films prepared by physical vapor deposition, sol–gel and RF sputtering. Received: 18 March 2002 / Accepted: 7 October 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +86-25/359-5535, E-mail: mszhang@nju.edu.cn  相似文献   

12.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.  相似文献   

13.
Cr doped CdO thin films were deposited on glass substrates by reactive DC magnetron sputtering with varying film thickness from 250 to 400 nm. XRD studies reveal that the films exhibit cubic structure with preferred orientation along the (2 0 0) plane. The optical transmittance of the films decreases from 92 to 72%, whereas the optical energy band gap of the films decreased from 2.88 to 2.78 eV with increasing film thickness. The Wemple–DiDomenico single oscillator model has been used to evaluate the optical dispersion parameters such as dispersion energy (Ed), oscillator energy (Eo), static refractive index (no) and high frequency dielectric constant (ε). The nonlinear optical parameters such as optical susceptibility (χ(1)), third order nonlinear optical susceptibility (χ(3)) and nonlinear refractive index (n2) of the films were also determined.  相似文献   

14.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

15.
The structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method have been investigated. CuAlS2 in the form of films is prepared at different deposition conditions by a simple and economical spray pyrolysis method. The structural, surface morphology and optical properties of the films were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and absorbance spectra, respectively. The films were polycrystalline, crystallized in a tetragonal structure, and are preferentially orientated along the (1 1 2) direction. Grain size values, dislocation density, and d% error of CuAlS2 films were calculated. The optical band gap of the CuAlS2 film was found to be 3.45 eV. The optical constants such as refractive index, extinction coefficient and dielectric constants of the CuAlS2 film were determined. The refractive index dispersion curve of the film obeys the single oscillator model. Optical dispersion parameters Eo and Ed developed by Wemple-DiDomenico were calculated and found to be 3.562 and 12.590 eV.  相似文献   

16.
The optical properties of ethylene vinyl acetate (EVA) film have been studied. The effects of gamma irradiations on the optical spectrum of EVA films have been investigated using spectrophotometric measurements of reflectance and transmittance in the wavelength range 200–1100 nm. The absorption spectra were recorded in the UV–vis region for the unirradiated and irradiated films (from 0 to 50 kGy). Optical constants such as refractive index (n), extinction coefficient (K), and complex dielectric constant have been determined, as well as the optical dispersion parameters and high frequency dielectric constants. A large dependence of the fundamental optical constants on the irradiation dose was noticed. On irradiation, a higher refractive index was obtained as compared with that for unirradiated film. The dispersion parameters, such as E 0 (single‐oscillator energy), E d (dispersive energy), and M ?1 and M ?3 (moments), are discussed in terms of the single‐oscillator Wemple–DiDomenico model.  相似文献   

17.
Bi3TiNbO9 (BTN) thin films with layered perovskite structure were fabricated on fused silica by pulsed laser deposition. The XRD pattern revealed that the films are single-phase perovskite and highly (00l) textured. Their fundamental optical constants, such as band gap, linear refractive index, and linear absorption coefficient, were obtained by optical transmittance measurements. The dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The nonlinear optical absorption of the films was investigated by single beam Z-scan method at a wavelength of 800 nm with laser duration of 80 fs. We obtained the nonlinear absorption coefficient β=1.44×10−7 m/W. The results show that the BTN thin films are promising for applications in absorbing-type optical devices.  相似文献   

18.
Bi4Ti3O12 (BTO) and Bi3.25In0.75Ti3O12 (BTO:In) thin films were prepared on fused quartz and LaNiO3/Si (LNO) substrates by chemical solution deposition (CSD). Their microstructures, ferroelectric and optical properties were investigated by X-ray diffraction, scanning electron microscope, ferroelectric tester and UV-visible-NIR spectrophotometer, respectively. The optical band-gaps of the films were found to be 3.64 and 3.45 eV for the BTO and BTO:In films, respectively. Optical constants (refractive indexes and extinction coefficients) were determined from the optical transmittance spectra using the envelope method. Following the single electronic oscillator model, the single oscillator energy E0, the dispersion energy Ed, the average interband oscillator wavelength λ0, the average oscillator strength S0, the refractive index dispersion parameter (E0/S0), the chemical bonding quantity β, and the long wavelength refractive index n were obtained and analyzed. Both the refractive index and extinction coefficient of the BTO:In films are smaller than those of the BTO films. Furthermore, the refractive index dispersion parameter (E0/S0) increases and the chemical bonding quantity β decreases in the BTO and BTO:In films compared with those of bulk.  相似文献   

19.
Thin films of In-doped Ge-S in the form of Ge35In8S57 with different film thickness were deposited using an evaporation method. The X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature for these films. Some optical constants were calculated at a thickness of 150, 300, 450 and 900?nm and annealing temperature of 373, 413, 437 and 513?K. Our optical observations show that the mechanism of the optical transition obeys the indirect transition. It was found that the energy gap, Eg, decreases from 2.44 to 2.20?eV with expanding the thickness of the film from 150 to 900?nm. On the other hand, it was found that Eg increases with annealing temperature from 373 to 513?K. The increment in the band gap can be attributed to the gradual annealing out of the unsaturated bonds delivering a decreasing the density of localized states in the band structure. Using the single oscillator model, the dispersion of the refractive index is described. The dispersion constants of these films were calculated with different both thickness and annealing temperatures. Additionally, both of nonlinear susceptibility, χ(3) and nonlinear refractive index, n2 were calculated.  相似文献   

20.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号