首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon(mc-Si) surface texturing. In this paper, capacitively coupled plasma(CCP) driven by a dual frequency(DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency(RF)input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density n9e must be larger than 6.3 × 10cm-3and the spectral intensity ratio of the F atom to that of the O atom([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109cm-3.  相似文献   

2.
The dispersion relation for general dust low frequency electrostatic surface waves propagating on an interface between a magnetized dusty plasma region and a vacuum is derived by using specular reflection boundary conditions both in classical and quantum regimes. The frequency limit ωωci ωce is considered and the dispersion relation for the Dust-Lower-Hybrid Surface Waves(DLHSW's) is derived for both classical and quantum plasma half-space and analyzed numerically. It is shown that the wave behavior changes as the quantum nature of the problem is considered.  相似文献   

3.
Castellation of plasma facing components is foreseen as the best solution for ensuring the lifetime of future fusion devices. However, the gaps between the resulting surface elements can increase fuel retention and complicate fuel removal issues. To know how the fuel is retained inside the gaps, the plasma sheath around the gaps needs to be understood first. In this work, a kinetic model is used to study plasma characteristics around the divertor gaps with the focus on the H+ penetration depth inside the poloidal gaps, and a rate-theory model is coupled to simulate the hydrogen retention inside the tungsten gaps. By varying the magnetic field strength and plasma temperature, we find that the H+ cyclotron radius has a significant effect on the penetration depth. Besides, the increase of magnetic field inclination angle can also increase the penetration depth. It is found in this work that parameters as well as the penetration depth strongly affect fuel retention in tungsten gaps.  相似文献   

4.
The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TiC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TiC plane. The Williamson-Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from ~ 50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm-1 and from 560 to 620 cm-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.  相似文献   

5.
Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5 %. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-rim shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.  相似文献   

6.
Helicon plasma sources are known as efficient generators of uniform and high density plasma. A helicon plasma source was developed for the investigation of plasma stripping and plasma lenses at the Institute of Modern Physics, CAS. In this paper, the characteristics of helicon plasma have been studied by using a Langmuir four-probe and a high plasma density up to 3.9× 10^13/cm^3 has been achieved with the Nagoya type III antenna. In the experiment, several important phenomena were found: (1) for a given magnetic induction intensity, the plasma density became greater with the increase of RF power; (2) helicon mode appeared at RF power between 300 W and 400 W; (3) the plasma density gradually tended to saturation as the RF power increased to the higher power; (4) a higher plasma density can be obtained by a good match between the RF power and the magnetic field distribution. The key issue is how to optimize the matching between the RF power and the magnetic field. Moreover, some tests on the extraction of ion beams were performed, and preliminary results are given. The problems which existed in the helicon ion source will be discussed and the increase in beam density will be expected by extraction system optimum.  相似文献   

7.
Some notes and comments on ion acceleration in laser-plasma interaction is given, in particular for the implication of shock, sheath and sealing. A simple model is proposed for ion acceleration by the combination of shock and sheath. The obtained scaling relations between the maximum ion energy and laser parameters (power, pulse duration) as well plasma parameter (plasma density)for example α PL 7/12 Eion,max α TL1/3 and Eion,max α ne2/3,are compared to the previous works. Some deficiencies and implications of model and results are discussed.  相似文献   

8.
Several experiments are performed on the ShenGuang-II laser facility to investigate an x-ray source and test radiography concepts.X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources.By using a time-integrated space-resolved keV spectroscope and pinhole camera,potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength,ratio of pre-pulse intensity to main pulse intensity,and laser intensity (from 7.25 to~11.3×10 15 W/cm 2).One-dimensional radiography using a grid consisting of 5 μm Au wires on 16 μm period and the pinhole-assisted point projection is tested.The measurements show that the size of the helium-like titanium Kα source from a simple foil target is larger than 100 μm,and relative x-ray line emission conversion efficiency ξ x from the incident laser light energy to heliumlike titanium K-shell spectrum increases significantly with pre-pulse intensity increasing,increases rapidly with laser wavelength decreasing,and increases moderately with main laser intensity increasing.It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast.It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.  相似文献   

9.
Polycrystalline rare-earth hexaborides (NdxGdl-x)B6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH2, NdH2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionie emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (〉95%) and high values of Vickers hardness (2319 kg/mm2). The values are much higher than those obtained in the traditional method. With the increase of Nd content,the thermionic emission current density increases from 11 to 16.30 A/cm2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties.  相似文献   

10.
刘晶晶 《中国物理 C》2009,33(10):834-837
Based on the Weinberg-Salam theory, the plasma neutrino energy loss rates of vector and axialvector contributions are studied. A ratable factor of the rates from the axial-vector current relative to those of the total neutrino energy loss rates is accurately calculated. The results show that the ratable factor will reach a maximum of 0.95 or even more at relatively higher temperature and lower density (such as p/μe 〈 10^7 g/cm^3). Thus the rates of the axial-vector contribution cannot be neglected. On the other hand, the rates of the axialvector contribution are on the order of ~0.01% of the total vector contribution, which is in good agreement with Itoh's at relatively high density (such as p/μe 〉 10^7 g/cm^3) and a temperature of T ≤ 10^11 K.  相似文献   

11.
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.  相似文献   

12.
A plasma column with a length of about 65 cm is generated in the upstream region of a plasma jet using dielectric barrier discharge configurations. The effects of experimental parameters such as the amplitude of the applied voltage and the driving frequency are investigated in aspects of the plasma column by the optical method. Results show that both the plasma length and the propagating velocity, as well as the discharge current, increase with the increase in the applied voltage or its frequency. The discharge mechanism is analysed qualitatively based on streamer theory, where photo-ionization is important. Furthermore, optical emission spectroscopy is used to investigate the electric field intensity of the upstream region.  相似文献   

13.
In this paper, oxidation of Ge surface by N2O plasma is presented and experimentally demonstrated. Results show that 1.0-nm GeO2 is achieved after 120-s N20 plasma oxidation at 300 ℃. The GeO2/Ge interface is atomically smooth. The interface state density of Ge surface after N20 plasma passivation is about - 3 × 1011 cm-2.eV-1. With GeO2 passivation, the hysteresis of metal-oxide-semiconductor (MOS) capacitor with A1203 serving as gate dielectric is reduced to - 50 mV, compared with - 130 mV of the untreated one. The Fermi-level at GeO2/Ge interface is unpinned, and the surface potential is effectively modulated by the gate voltage.  相似文献   

14.
The potential of controlling shockwave–boundary layer interactions(SWBLIs) in air by plasma aerodynamic actuation is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images.The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.  相似文献   

15.
The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coefficient spectra, and so on. It is found that different kinds of hydrogen plasma radicals are responsible for passivating different defects in polySi. The Ha with lower energy is mainly responsible for passivating the solid phase crystallization (SPC) poly-Si whose crystallization precursor is deposited by plasma-enhanced chemical vapor deposition (PECVD). The H* with higher energy may passivate the defects related to teh Ni impurity around the grain boundaries more effectively. In addition, Hβ and H7 with the highest energy are required to passivate intra-grain defects in the poly-Si crystallized by SPC but whose precursor is deposited bv low pressure chemical vapor deposition(LPCVD)  相似文献   

16.
A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E =3 J, 1064 rim, ~ 10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998%) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of A112+ and Pb7+ were achieved. The results will be presented and discussed in this paper.  相似文献   

17.
The propagation of a plasma shock wave generated from an Al target surface ablated by a nanosecond Nd:YAG laser operating at 355 nm in air is investigated at the different focusing positions of the laser beam by using a time-resolved shadowgraph imaging technique. The results show that in the case of a target surface set at the off-focus position, the condition of the focal point behind or in front of the target surface greatly influences the evolution of an Al plasma shock wave, and an ionization channel forms in the case of the focal point set in front of the target surface. Moreover, it is found that the shadowgraph with the evolution time around 100 ns shows that a protrusion appears at the front tip of the shock wave if the focal point is at the target surface. In addition, the calculated results of the expanding velocity of the shock wave front, the mass density, and pressure just behind the shock wave front are presented based on the shadowgraphs.  相似文献   

18.
The role of temperature on the oxidation dynamics of Cu20 on ZnO (0001) was investigated during the oxidation of Cu (111)/ZnO (0001) by using oxygen plasma as the oxidant. A transition from single crystalline Cu20 (111) orientation to micro-zone phase separation with multiple orientations was revealed when the oxidation temperature increased above 300 ~ C. The experimental results clearly show the effect of the oxidation temperature with the assistance of oxygen plasma on changing the morphology of Cu (111) film and enhancing the lateral nucleation and migration abilities of cuprous oxides. A vertical top-down oxidation mode and a lateral migration model were proposed to explain the different nucleation and growth dynamics of the temperature-dependent oxidation process in the oxidation of Cu (lll)/ZnO (0001).  相似文献   

19.
In order to describe the characterization of resistive drift-wave fluctuation in a tokamak plasma,a coupled inviscid two-dimensional Hasegawa–Wakatani model is investigated.Two groups of new analytic solutions with and without phase shift between the fluctuant density and the fluctuant potential are obtained by using the special function transformation method.It is demonstrated that the fluctuant potential shares similar spatio–temporal variations with the density.It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex,and that the fluctuation may be controlled through the adiabaticity and diffusion.By using the typical parameters in the quasi-adiabatic regime in the solutions with phase shift,it is shown that the density gradient becomes larger as the contours become dense toward the plasma edge and the contours have irregular structures,which reveal the nonuniform distribution in the tokamak edge.  相似文献   

20.
The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号