首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effect of composition of SiNx on the properties of organic thin-film transistors (OTFTs), we fabricated bottom gate top contact OTFTs devices with different composition SiNx gate insulator. Pentacene based OTFTs with SiNx insulator, prepared using an interface modification process of UV-ozone treatment, exhibited effective mobility of 0.63 cm2/Vs and on/off current ratio of 105. Overall improvement in field-effect mobility, threshold voltage was observed as silicon content in SiNx increases. The results demonstrate that the viability of using SiNx for OTFTs and of UV-ozone treatment could be used to improve the properties of organic thin-film transistors. The dependence of the contact angle on the SiNx film composition is evident for the untreated samples, the contact angle increases as the silicon content in the untreated nitride film increases. In contrast, the rise in contact angle across all samples after surface treatment signifies effective surface modification to promote hydrophobicity of the nitride surface. The hydrophobic surface is needed for the organic semiconductor.  相似文献   

2.
Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V s was achieved, which is comparable to that of single-crystal CuPc devices (0.1–1 cm2/V s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed.  相似文献   

3.
A reliable surface treatment for the pentacene/gate dielectric interface was developed to enhance the electrical transport properties of organic thin-film transistors (OTFTs). Plasma-polymerized fluorocarbon (CFx) film was deposited onto the SiO2 gate dielectric prior to pentacene deposition, resulting in a dramatic increase of the field-effect mobility from 0.015 cm2/(V s) to 0.22 cm2/(V s), and a threshold voltage reduction from −14.0 V to −9.9 V. The observed carrier mobility increase by a factor of 10 in the resulting OTFTs is associated with various growth behaviors of polycrystalline pentacene thin films on different substrates, where a pronounced morphological change occurs in the first few molecular layers but the similar morphologies in the upper layers. The accompanying threshold voltage variation suggests that hole accumulation in the conduction channel-induced weak charge transfer between pentacene and CFx.  相似文献   

4.
The long-term stability of pentacene thin-film transistors (TFTs) encapsulated with a transparent SnO2 thin-film prepared by ion beam-assisted deposition (IBAD) was investigated. After encapsulation process, our organic thin-film transistors (OTFTs) showed somewhat degraded field-effect mobility of 0.5 cm2/(V s) that was initially 0.62 cm2/(V s), when a buffer layer of thermally evaporated 100 nm SnO2 film had been deposited prior to IBAD process. However, the mobility was surprisingly sustained up to 1 month and then gradually degraded down to 0.35 cm2/(V s) which was still three times higher than that of the OTFT without any encapsulation layer after 100 days in air ambient. The encapsulated OTFTs also exhibited superior on/off current ratio of over 105 to that of the unprotected devices (∼104) which was reduced from ∼106 before aging. Therefore, the enhanced long-term stability of our encapsulated OTFTs should be attributed to well protection of permeation of H2O and O2 into the devices by the IBAD SnO2 thin-film which could be used as an effective inorganic gas barrier for transparent organic electronic devices.  相似文献   

5.
制作了底栅极顶接触有机薄膜晶体管器件,60 nm的pentacene被用作有源层,120 nm热生长的SiO2作为栅极绝缘层.通过采用不同自组装修饰材料对器件的有源层与栅极绝缘层之间的界面进行修饰,如octadecyltrichlorosilane (OTS),phenyltrimethoxysilane (PhTMS),来比较界面修饰层对器件性能的影响.同时对带有PhTMS修饰层的OTFTs器件低栅极电压调制下的场效应行为及其载流子的传输机理进行研究.结果得到,当|V 关键词: 有机薄膜晶体管 自组装单分子层 场效应迁移率 低栅极调制电压  相似文献   

6.
Hybrid organic/inorganic thin-film transistors (TFTs) with bottom-contact configuration were fabricated using the Laser Induced Forward Transfer (LIFT) process. The semiconducting polymer P3HT was laser printed from a donor to a receiver substrate in order to form the active layer of the TFTs. With a single laser pulse, P3HT pixels were successfully printed. The printed material was analyzed morphologically by means of Optical Microscopy and its thickness was measured by profilometry. In addition, structural characterization of P3HT thin films before and after laser printing took place by using UV-Visible absorption spectroscopy and X-Ray Diffraction. It was found that the crystallinity of the investigated films is improved upon annealing. An organic thin-film transistor (OTFT) with laser printed P3HT pixel as a channel layer was then fabricated. The OTFTs indicated a field-effect mobility up to 2.23?10?4 cm2/Vs and an on/off ratio on the order of 10–100.  相似文献   

7.
《Current Applied Physics》2014,14(7):941-945
We have investigated the electrical performance of amorphous indium–gallium–zinc oxide (α-IGZO) thin-film transistors with various channel thicknesses. It is observed that when the α-IGZO thickness increases, the threshold voltage decreases as reported at other researches. The intrinsic field-effect mobility as high as 11.1 cm2/Vs and sub threshold slope as low as ∼0.2 V/decade are independent on the thickness of α-IGZO channel, which indicate the excellent interface between α-IGZO and atomic layer deposited Al2O3 dielectric even for the case with α-IGZO thickness as thin as 10 nm. However, the source and drain series resistances increased with increasing of α-IGZO channel thickness, which results in the apparent field-effect mobility decreasing. The threshold voltage shift (ΔVth) under negative bias stress (NBS) and negative bias illumination stress (NBIS) were investigated, also. The hump-effect in the sub threshold region under NBS and threshold voltage shift to negative position under NBIS were enhanced with decreasing of α-IGZO channel thickness, owing to the enhancement of vertical electrical field in channel.  相似文献   

8.
通过扫描电镜和X射线衍射对SiO2衬底上生长并五苯和酞菁铜薄膜的表面形貌进行表征,并得到在SiO2衬底上生长的并五苯薄膜是以岛状结构生长,其大小约为100nm,且薄膜有较好的结晶取向,呈多晶态存在. 酞菁铜薄膜则没有表现出明显的生长机理,其呈非晶态存在. 还对通过掩膜的方法制作得以酞菁铜和并五苯为有源层的顶栅极有机薄膜晶体管的特性进行了研究. 有源层的厚度为40nm,绝缘层SiO2的厚度为250nm,器件的沟道宽长比(W/关键词: 有机薄膜晶体管 并五苯薄膜 酞菁铜薄膜 μEF)')" href="#">场效应迁移率(μEF)  相似文献   

9.
In this paper full polymer thin-film transistors (PTFTs) based on Poly (acrylonitrile) (PAN) as the gate dielectric and poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) as the semiconductor layer were investigated by using different channel width/length ratios. Relatively high dielectric constant of the polymer dielectric layer (6.27) can remarkably reduce the threshold voltage of the transistors to below -3V. Hole field-effect mobility of MEH-PPV of the PTFTs was about 4.8×10-4cm2/Vs, and on/off current ratio was larger than 102, which was comparable with that of transistors with widely used Poly (4-vinyl phenol) (PVP) or SiO2 as gate dielectrics.  相似文献   

10.
A novel cross-linkable copolymer for the gate insulators of organic thin-film transistors (OTFTs) was synthesized by free radical copolymerization with methyl methacrylate and ethylene methylacrylate cinnamoylate. Copolymers of molecular weights (Mn: 109200–160000 g mol−1) and polydispersities (1.59–2.24) were characterized by FTIR and NMR. Spin-coated thin films had smooth surfaces with the root-mean-square (RMS) surface roughness of 0.23 nm, 0.41 nm, respectively, before and after UV irradiation. Exposure of the copolymers to UV light produced cross-linking of the polymeric chains that could be confirmed by comparing the FTIR and UV spectra recorded prior and after irradiation. Moreover, the vanadyl-phthalocyanine (VOPc) OTFTs with the photosensitive copolymer as gate insulator were fabricated and found to exhibit a carrier mobility of 0.25 cm2/V s, an on/off ratio of 104.  相似文献   

11.
We have studied the effect of self-assembled monolayer (SAM) on the performance and bias-induced changes in bottom contact, inkjet printed organic thin-film transistors (OTFTs) with 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). The device was fabricated using the photo-definable photoacryl (PA) and silver (Ag) as gate insulator and source/drain metal electrodes, respectively. The SAM was formed by immersing the patterned Ag electrodes in pentafluorothiophenol (PFBT) solution or by spin coating of phenethyltrichlorosilane (PTS) on the substrate, and TIPS pentacene was inkjet printed at 90 °C. The OTFT with SAMs exhibited the field-effect mobility of 0.18 cm2/Vs and showed the stretched exponential decay with time constant of 1.13 × 107 s and exponential exponent of 0.28.  相似文献   

12.
We employ the Ta2Os/PVP (poly-4-vinylphenol) double-layer gate insulator to improve the performance of pentacene thin-film transistors. It is found that the double-layer insulator has low leakage current, smooth surface and considerably high capacitance. Compared to Ta205 insulator layers, the device with the Ta2Os/PVP doublelayer insulator exhibits an enhancement of the field-effect mobility from 0.21 to 0.54 cm2/Vs, and the decreasing threshold voltage from 4.38 V to -2.5 V. The results suggest that the Ta2Os/PVP double-layer insulator is a potential gate insulator for fabricating OTFTs with good electrical performance.  相似文献   

13.
The bias stress effect in pentacene thin-film transistors (TFTs) with and without MoOx interlayer was characterized. The device without MoOx interlayer showed a large threshold voltage shift of 5.1 V after stressing with a constant gate-source voltage of −40 V for 10000 s, while at the same condition, the device with MoOx interlayer showed a low threshold voltage shift of 1.9 V. The results can be attributed to the stable interface between MoOx/pentacene and small contact resistance change for the device with MoOx/Cu electrode. Pentacene-TFTs with MoOx interlayer showed a high field-effect mobility of 0.61 cm2/V s and excellent bias stability, which could be a significant step toward the commercialization of OTFT technology.  相似文献   

14.
制备了基于F16CuPc和CuPc的双异质结结构的双极型有机薄膜晶体管。该器件的载流子迁移率是相同工艺制备的F16CuPc和CuPc双层单异质结有机薄膜晶体管器件的4~5倍。同时,该双异质结结构还能调整载流子的阈值电压,减少双层结构对薄膜厚度等工艺条件的苛刻要求。这种双异质结结构为提升双极型有机薄膜晶体管器件的性能提供了一种有效方法。  相似文献   

15.
In this letter, indium–titanium–zinc–oxide thin-film transistors with zirconium oxide (ZrOx) gate dielectric were fabricated at room temperature. In the devices, an ultra-thin ZrOx layer was formed as the gate dielectric by sol–gel process followed by ultraviolet (UV) irradiation. The devices can be operated under a voltage of 4 V. Enhancement mode operations with a high field-effect mobility of 48.9 cm2/V s, a threshold voltage of 1.4 V, a subthreshold swing of 0.2 V/decade, and an on/off current ratio of 106 were realized. Our results demonstrate that UV-irradiated ZrOx dielectric is a promising gate dielectric candidate for high-performance oxide devices.  相似文献   

16.
Different fluoride materlals are used as gate dielectrics to fabricate copper phthalocyanine (CuPc) thin film transistors (OTFTs). The fabricated devices exhibit good electrical characteristics and the mobility is found to be dependent on the gate voltage from 10^-3 to 10^-1 cm^2V^-1 s^-1. The observed noticeable electron injection at the drain electrode is of great significance in achieving ambipolar OTFTs, The same method for formation of organic semiconductors and gate dielectric films greatly simplifies the fabrication process. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for integration in organic displays.  相似文献   

17.
《Current Applied Physics》2010,10(5):1306-1308
Low-voltage-drive ZnO thin-film transistors (TFTs) with room-temperature radio frequency magnetron sputtering SiO2 as the gate insulator were fabricated successfully on the glass substrate. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 4.2 V, a field effect mobility of 11.2 cm2/V s, an on/off ratio of 3.1 × 106 and a subthreshold swing of 0.61 V/dec. The drain current can reach to 1 mA while the gate voltage is only of 12 V and drain voltage of 8 V. The C–V characteristics of a MOS capacitor with the structure of ITO/SiO2/ZnO/Al was investigated. The carrier concentration ND in the ZnO active layer was determined, the calculated ND is 1.81 × 1016 cm−3, which is the typical value of undoped ZnO film used as the channel layer for ZnO-TFT devices. The experiment results show that SiO2 film is a promising insulator for the low voltage and high drive capability oxide TFTs.  相似文献   

18.
Organic thin-film transistors (OTFTs) with top- and bottom-contact configurations were fabricated using silver nano-inks printed by laser forward transfer for the gate and source/drain electrodes with pentacene and poly-4-vinylphenol as the organic semiconductor and dielectric layers, respectively. The volume of the laser-printed Ag pixels was typically in the subpicoliter (0.2–0.4 pl) range. The top-contact OTFTs resulted in lower contact resistance compared to those obtained from the bottom-contact OTFTs, and showed improved overall device performance. The top-contact OTFTs exhibited field-effect mobilities of ∼0.16 cm2 V−1 s−1 and on/off current ratios of ∼105.  相似文献   

19.
In this work, n- type organic thin film transistors (OTFTs) based on different kinds of organic dielectrics were fabricated, characterized and theoretically investigated. Three kinds of organic insulators were applied as dielectric gate which are: divinyl tetramethyl disiloxane-bis (benzo-cyclobutene) (BCB), poly(vinylalcohol) (PVA) and poly (4-vinyl phenol) (PVP). Analytical model was applied to describe the electrical behavior of the fabricated OTFTs and to explain the absence of saturation of the drain current for the device based on PVA dielectric. In addition, Meyer–Neldel rule-grain boundary model was applied for the calculation of total resistance of OTFTs based on different dielectrics materials. The theoretical results of output characteristics and total resistance showed an excellent agreement with the experimental measurements. The experimental and theoretical calculations revealed that the n-channel OTFTs based on BCB as an insulator layer exhibited superior electrical characteristics in terms of threshold voltage, mobility and drain current compared with the devices based on PVA and PVP as a gate insulator layer. The device based on BCB organic insulator layer has the largest mobility of 4?×?10?3 cm2 V?1 s?1, the smallest leakage current relative to the devices based on PVA and PVP. While, the device fabricated with PVP organic insulator gate has a large trap density on the PVP-EHPDI interface which causes a pronounced decrease in field effect mobility and consequently drain current.  相似文献   

20.
Organic field‐effect transistors were fabricated using a domain‐ordered copper phthalocyanine (CuPc) thin film as the active layer prepared by weak epitaxial growth (WEG) technology. CuPc was deposited onto α‐sexithiophene (α‐6T) and α,ω‐dihexylsexithiophene (α,ω‐DH6T) films acting as the epitaxial substrate to realize the domain‐order growth. As a result, the thin‐film morphology of CuPc exhibits many re‐ gional domain‐ordered structures measured by atomic force microscopy and X‐ray diffraction. The field‐effect mobilities are 0.11 and 0.085 cm2/Vs for the devices with CuPc/α‐6T and CuPc/α,ω‐DH6T, respectively. The threshold voltages were –7 V and –13 V for CuPc/α‐6T and CuPc/α,ω‐DH6T, respectively. The improved device performance could be attributed to the domain‐order structure of the CuPc thin film. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号