首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
比较了旋转蒸发仪、全玻璃蒸馏装置和全自动蒸馏控制系统3种蒸馏方法,对葡萄酒乙醇δ13C值的影响,确定了元素分析-同位素比质谱仪(Elementary analysis-isotope ratio mass spectrometer)最佳测定条件,建立了元素分析-同位素比质谱法测定乙醇δ13C值方法。在重复性和再现性条件下,对乙醇标准及葡萄酒乙醇δ13C值进行测定,标准偏差低于0.25‰。检测食品同位素分析技术-能力测试计划(FIT-PTS)两个葡萄酒样品乙醇δ13C值,与给定值相差0.2‰。采用液相色谱-同位素比质谱法(Liquid chromatography-isotope ratio mass spectrometry)与本方法分别对16个国家和地区40个葡萄酒样品的乙醇δ13C值测定,其结果为!23.90‰~28.29‰,且两种检测方法的检测结果差值︳Δδ(EA-LC)max︳<0.3‰,具有较强的相关性(R2=0.9749)。本方法无同位素分馏,适用于葡萄酒中乙醇δ13C值测定。  相似文献   

2.
以国际原子能机构提供的蔗糖(δ13C为-10.449‰)作为溯源标准,建立了液相色谱-同位素比值质谱联用法(LC-IR MS)分析天然柑桔、橙汁中柠檬酸碳同位素比的方法,对不同产地个柑桔、橙子中有机酸碳同位素情况进行了研究。基于建立天然水果的柠檬酸碳同位素δ13C值的数据,提出了柑桔、橙子样品的δ13C值范围。方法将果汁用水稀释后,液相色谱-钙离子交换色谱在线制备柠檬酸,氢型离子交换柱分离柠檬酸后采用液相色谱-稳定同位素比质谱分析,柠檬酸方法检出限为5μg/m L,在2.00~100μg/m L水平时,柠檬酸响应与浓度成线性关系,相关系数为0.9997。方法日内、日间和人员比对结果相对标准偏差小于0.82%。收集不同产地161个橙子、167个柑桔测得天然桔汁中柠檬酸δ13C值在-32.87‰~-27.07‰之间,橙汁柠檬酸δ13C值在-32.73‰~26.01‰之间。采集40个市售柑桔、橙汁样品进行鉴定,检出17个掺有C4植物柠檬酸的的阳性样品,新方法可提高勾兑柠檬酸掺假果汁的鉴别能力。  相似文献   

3.
本文以鸡油和猪油为例,旨在运用稳定碳同位素技术建立区分痕量动物油与植物油的区分检验方法。先在实验室内制备猪油和鸡油样品,然后运用气相色谱-质谱联用仪(GC-MS)、气相色谱-同位素比值质谱仪(GC-IRMS)和元素分析-同位素比值质谱仪(EA-IRMS)对猪油和鸡油的脂肪酸组成与其全油和脂肪酸的稳定碳同位素比值进行了研究。结果显示:鸡油的δ13C值处于-21.58‰至-18.30‰(脂肪酸:-21.58‰~-18.30‰;全油:-19.82‰~-19.30‰)的区间;猪油的δ13C值处于-22.16‰至-16.15‰(脂肪酸:-22.16‰~-16.15‰;全油:-18.70‰~-16.83‰)的区间;鸡油和猪油的δ13C值与大多数植物油的δ13C值存在显著差异。因此,基于动物油与植物油在δ13C值方面存在的显著差异性,建立区分痕量动物油和植物油的高灵敏的检验方法。  相似文献   

4.
采用元素分析-同位素比值质谱法(EA-IRMS)对纯正葡萄汁掺假情况进行研究。通过测定152个不同产区纯正葡萄汁的碳同位素比值(δ~(13)C值),初步建立了纯正葡萄汁的同位素数据库。检测结果表明,纯正葡萄汁中糖的δ~(13)C值(δ~(13)CS)范围为-26.92‰~-24.16‰,而有机酸的δ~(13)C值(δ~(13)CO)范围为-27.56‰~-24.99‰。根据上述两个参数,提出了纯正葡萄汁应满足的δ~(13)C值要求:有机酸和糖的差值(Δδ~(13)C_(O-S))在-1.63‰~0.72‰范围内。采用该法对85个市售葡萄汁进行检测,检出31个掺入碳-4植物糖和有机酸的阳性样品。糖浆添加实验的结果表明,该方法可以检测8%以上碳-4植物糖的掺假,能有效鉴别葡萄汁的掺假,在葡萄汁的品质保证方面有很大的实际应用潜力。  相似文献   

5.
李学民  贾光群  曹彦忠  张进杰  王蕾  孙会媛 《色谱》2013,31(12):1201-1205
采用液相色谱-同位素比质谱(LC-IRMS)技术建立了同时测定葡萄酒中甘油和乙醇δ13C值的分析方法。优化了葡萄酒中影响甘油和乙醇色谱分离的条件。方法的精密度和准确度分别为0.15‰~0.26‰和0.11‰~0.28‰。对40个葡萄酒样品进行了测定,甘油和乙醇的δ13 C值分别为-26.87‰~-32.96‰、-24.06‰~-28.29‰,两者具有较强的相关性(R=0.82)。该方法不需要复杂的样品预处理,在相同条件下同时测定甘油和乙醇的δ13C值,较传统方法简单、快速。  相似文献   

6.
中国化石燃料的同位素地球化学   总被引:3,自引:0,他引:3  
本文总结了作者近20年对中国化石燃料同位素研究结果。对煤而言,δ~(13)C分布的主频度在—25.5‰到—23.5‰。热演化影响可以忽略,但煤岩组份对δ~(13)C值有明显影响,壳质组含量增加,全煤δ~(13)C值相应变轻。煤系热模拟产物δ~(13)C所显示的规律有:气态烃在液态烃产出的峰值处有最轻的δ~(13)C值。液态烃与全煤具有相似δ~(13)C值,族组份中烷烃部分随温度增高δ~(13)C有变重的趋势。通过天然气的δ~(13)C和δD研究,将中国天然气划分出生物-热催化过渡带气这一类型。甲烷δD随水介质盐度增大而相应变重。轻烃同位素研究把气-液-源岩的关系更好的联系起来,它们的δ~(13)C系列对比有利于确定源岩。陆相石油δ~(13)C值,在有机质为Ⅰ型,介质为淡水时δ~(13)C较轻;Ⅲ型,盐水沉积环境的石油相对富集~(13)C。液、固相化石燃料的碳同位素组成主要受母质同位素继承效应的影响,其它因素影响较小。  相似文献   

7.
以IAEA-600咖啡因(δ13C-27.771‰)作为溯源标准,建立了气相色谱同位素质谱技术测定鱼油中功能因子亚油酸(LIA)、亚麻酸(LNA)、花生四烯酸(ARA)、二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)等5种不饱和脂肪酸碳稳定同位素比值δ13C的分析方法。鱼样品先经HCl水解,乙醚液液萃取脂肪,提取的脂肪在2 mol/L KOH-甲醇溶液中反应生成脂肪酸甲酯,采用强极性毛细管气相色谱柱(Sil-88 100 m×0.25 mm×0.2μm)分离,稳定同位素比质谱测定。方法经日内、日间和人员比对验证,表明测定结果稳定,标准偏差小于0.82%。收集了不同产地的241个淡水鱼和深海鱼,对于提取的天然鱼油进行5种不饱和脂肪酸同位素比值分析,测得天然鱼油中5种不饱和脂肪酸同位素比值(δ13C)在-32.87‰~27.07‰之间,经计算,鱼油中不饱和脂肪酸δ13C值与硬脂酸δ13C值之比在-5.79~1.88之间,同时测得了相同的产地、品种鱼油中不饱和脂肪酸δ13C的分布范围,构建了天然鱼油的同位素指纹特征数据库,用于鉴定鱼油真伪。将不同浓度玉米油添加至天然金枪鱼油中进行测定,证明δ13C值的变化与掺入C4植物油量呈良好的线性关系,方法可根据δ13C值的变化鉴别掺假的鱼油。  相似文献   

8.
用从国际原子能机构溯源得到的橄榄油标准物质[Cat No.B 2172-Batch 3130,其δ13CPDB为(-28.51±0.16)‰]作标准,应用稳定同位素比质谱法测定了苹果和苹果汁的δ13 C值,并以此确定国产苹果的δ13 C值的范围和鉴定制成的果汁的质量。苹果样品去皮后切碎,打成糊状,离心后取其上清液,在75℃加热2~3h至呈黏稠状液体,冷却至室温。此时其糖度约为70Brix。浓缩苹果汁样品是黏稠液体,其糖度一般也在70Brix左右。取2μL上述样品置于锡杯中,按方法处理后供质谱分析。标准物质的进样量为2μL。按所测得碳的稳定同位素13C与12C的比值代入所给公式计算δ13 C值。结果表明:方法的精密度较好,其相对标准偏差(n=11)均小于0.021%。根据测定结果发现,我国苹果的δ13C值在-29.1‰~-23.33‰之间。  相似文献   

9.
水体中痕量挥发性有机物单体碳同位素组成分析   总被引:2,自引:0,他引:2  
刘国卿  张干  黄世卿  彭先芝  陈鸿汉 《色谱》2004,22(4):439-441
将固相微萃取(SPME)技术与冷阱富集系统相结合,对水体中痕量挥发性有机物进行了单体碳同位素分析,方法检测限较常规SPME提高了一个数量级。在优化的条件下,对20 μg/L的三氯乙烯/四氯乙烯和10 μg/L的苯/甲苯水溶液进行了单体碳同位素分析,相比于纯溶剂(液相)碳同位素值,顶空(气相)同位素分析误差不超过0.5‰,而样本标准偏差为0.3‰。对某受四氯乙烯污染的北京地下水进行了同位素测定,近污染源点(B408)与远污染源点(B230)四氯乙烯的碳同位素值(δ13C)分别为 -37.8‰和-34.45‰  相似文献   

10.
松辽盆地非生物成因气的探讨   总被引:80,自引:0,他引:80  
松辽盆地为—克拉通内裂谷盆地。基底、地壳及超壳深大断裂发育。沿深大断裂发生的沉积同期和后期的岩浆活动活跃,存在着非生物成因天然气及其伴生资源的供给条件。非生物成因甲烷沿深大断裂分布,δ~(13)C为-12.8‰至-24.2‰;甲烷同系物碳同位素组成δ~(13)C值反序排列,即δ~(13)C_1>δ~(13)C_2>δ~(13)C_3;氦同位素显示了含幔源氦的同位素组成特征,~3He/~4He=2.34—2.97×10~(-6);上述事实表明,松辽盆地可能存在非生物成因天然气及其伴生资源,是裂谷型沉积盆地资源评价的重要内容。  相似文献   

11.
This paper describes the establishment of a robust method to determine compound specific δD and δ(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable δD analysis and investigated the impact of storage time on δD and δ(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6‰ (δD) when stored for 148 days at 4 °C. However, benzene revealed occasionally D depleted values (21‰ SD) for unknown reasons. δ(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7‰ and 0.4‰, respectively) on δ(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time δD values of atmospheric VOCs in the above range are reported. Significant differences in δD of up to 130‰ were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen isotope analysis. The ability to analyse δD by TD-GC-irMS complements the characterisation of atmospheric VOCs and is maybe used for establishing further source(s).  相似文献   

12.
For the real-time measurements of volatile organic compounds (VOCs) in vehicle exhaust, we employed a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). Exhaust measurements from gasoline and diesel engine vehicles were performed using a chassis dynamometer. Hydrocarbons such as alkylbenzenes, alkenes, alkanes, and dienes were the major organic compounds present in both gasoline and diesel engine exhaust. The concentrations of organic compounds in gasoline exhaust were higher under running conditions than during idling. The VOC concentrations in diesel exhaust were higher during idling than during running conditions. The VUV-SPI-TOFMS measured composition and emission profiles of many hydrocarbons, including aliphatics and aromatics, in vehicle exhaust simultaneously with real time response.  相似文献   

13.
Isoprene is one of the most important non‐methane hydrocarbons (NMHCs) in the troposphere: it is a significant precursor of O3 and it affects the oxidative state of the atmosphere. The diastereoisomeric 2‐methyltetrols, 2‐methylthreitol and 2‐methylerythritol, are marker compounds of the photooxidation products of atmospheric isoprene. In order to obtain valuable information on the δ13C value of isoprene in the atmosphere, the stable carbon isotopic compositions of the 2‐methyltetrols in ambient aerosols were investigated. The 2‐methyltetrols were extracted from filter samples and derivatized with methylboronic acid, and the δ13C values of the methylboronate derivatives were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The δ13C values of the 2‐methyltetrols were then calculated through a simple mass balance equation between the 2‐methyltetrols, methylboronic acid and the methylboronates. The δ13C values of the 2‐methyltetrols in aerosol samples collected at the Changbai Mountain Nature Reserves in eastern China were found to be ?24.66 ± 0.90‰ and ?24.53 ± 1.08‰ for 2‐methylerythritol and 2‐methylthreitol, respectively. Based on the measured isotopic composition of the 2‐methyltetrols, the average δ13C value of atmospheric isoprene is inferred to be close to or slightly heavier than ?24.66‰ at the collection site during the sampling period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Monitoring of ambient volatile organic compounds(VOCs) was conducted within typical residentialcommercial area in the city of Xi’an in northwest China during typical ozone(O3) episodes, to investigate the major contributors to the characteristic of ambient VOCs and their impact on O3 production. In the residential-commercial area, diurnal variation of VOCs was highly impacted by vehicle exhaust, fuel evaporation, and local solvent use. Relative higher contributions(up to 60...  相似文献   

15.
The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the major ions present in the field, and in soil column experiments.  相似文献   

16.
The carbon and nitrogen stable ratios of royal jelly (RJ) samples from various origins are determined using an elemental analyser linked online to an isotope ratio mass spectrometer to evaluate authenticity and adulteration. The (13)C/(12)C and (15)N/(14)N stable isotope ratios are measured in more than 500 RJs (domestic, imported and derived from feeding experiments) in order to obtain isotopic measurements that take into account seasonal, botanical and geographical effects. Authenticity intervals are established for traditional beekeeping practices, without feeding, in the range -22.48 to -27.90‰ for δ(13)C. For these samples, the δ(15)N values range from -1.58 to 7.98‰, depending on the plant sources of pollen and nectar. The δ(13)C values of the commercial samples vary from -18.54 to -26.58‰. High δ(13)C values are typical of sugar cane or corn syrups which have distinctive isotopic (13)C signatures because both plants use the C4 photosynthetic cycle, in contrast to most RJs which are derived from C3 plants. These differences in the (13)C-isotopic composition allow the detection of the addition of such sugars. RJs from traditional sources and from industrial production by sugar feeding are thus successfully distinguished.  相似文献   

17.
For anchoring CO(2) isotopic measurements on the δ(18)O(VPD-CO2) scale, the primary reference material (NBS 19 calcite) needs to be digested using concentrated ortho-phosphoric acid. During this procedure, great care must be taken to ensure that the isotopic composition of the liberated gas is accurate. Apart from controlling the reaction temperature to ±0.1 °C, the potential for oxygen isotope exchange between the produced CO(2) and water must be kept to a minimum. The water is usually assumed to reside on the walls in the headspace of the reaction vessel. We demonstrate here that a large fraction of the exchange may also occur with water inside the acid. Our results indicate that both exchange reactions have a significant impact on the results and may have largely been responsible for scale inconsistencies between laboratories in the past. The extent of CO(2)/H(2)O oxygen exchange depends on the concentration (amount of free water) in the acid. For acids with a nominal H(3)PO(4) mass fraction of less than 102%, oxygen isotope exchange can create a substantial isotopic bias during high-precision measurements with the degree of the alteration being proportional to the effective isotopic contrast between the acid and the CO(2) released from the calcite. Water evaporating from the acid at 25 °C has a δ(18)O value of -34.5‰ relative to the isotopic composition of the whole acid. This large fractionation is likely to occur in two steps; by exchange with phosphate, water inside the acid is decreased in oxygen-18 relative to the bulk acid by ~ -22‰. This water is then fractionated further during evaporation. Oxygen exchange with both water inside the acid and water condensate in the headspace can contribute to the measured isotopic signature depending on the experimental parameters. The system employed for this study has been specifically designed to minimize oxygen exchange with water. However, the amount of altered CO(2) for a 95% H(3)PO(4) at 25 °C still accounts for about 3% of the total CO(2) produced from a 40 mg calcite sample, resulting in a δ(18) O range of about 0.8‰ when varying the δ(18)O value of the acid by 25‰. Least biased results for NBS19-CO(2) were obtained for an acid with a δ(18)O value close to +23‰ vs. VSMOW. In contrast, commercial acids from several sources had an average δ(18)O value of +13‰, amounting to a 10‰ offset from the optimal value. This observation suggests that the well-known scale incompatibilities between laboratories could arise from this difference with measurements that may have suffered systematically from non-optimal acid-δ(18)O values, thus producing variable offsets, depending on the experimental details. As a remedy, we suggest that the δ(18)O of phosphoric acid reacted with calcites for establishing a δ(18)O scale anchor be adjusted, and this should reduce the variability of the δ(18)O of CO(2) evolved in acid digestion to less than ±0.05‰. The adjustment should be made by taking into account the difference in δ(18)O between the calcite-CO(2) and the acid, with a target difference of 16‰. With this strategy, agreement between δ(18)O scales based on water, atmospheric CO(2) , and carbonates as well as data compatibility between laboratories may be substantially improved.  相似文献   

18.
Ginseng is a health food and traditional medicine highly valued in Asia. Ginseng from certain origins is higher valued than from other origins, so that a reliable method for differentiation of geographical origin is important for the economics of ginseng production. To discriminate between ginseng samples from South Korea and PR China, 29 samples have been analyzed for the isotopic composition of the elements H, C and N. The results showed δ(2)H values between -94 and -79‰, for δ(13)C -27.9 to -23.7‰ and for δ(15)N 1.3-5.4‰ for Chinese ginseng. Korean ginseng gave δ(2)H ratios between -91 and -69‰, δ(13)C ratios between -31.2 and -22.4‰ and δ(15)N ratios between -2.4 and +7‰. Despite the overlap between the values for individual isotopes, a combination of the isotope systems gave a reasonable differentiation between the two geographic origins. Especially the statistically significant difference in δ(2)H ratios facilitated the differentiation between Korean and Chinese ginseng samples.  相似文献   

19.
Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (δ13C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of δ13C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of δ13C of these upland soils mainly reflect decomposition of SOC. Long‐term disturbance of an upland soil is indicated by decreasing correlation of δ13C and SOC (r ≤ 0.80) which goes in parallel with increasing (visible) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate δ13C value (?27.5‰) for affected wetland soil horizons (0–12 cm) between upland (aerobic metabolism, relatively heavier δ13C of ?26.6‰) and wetland isotopic signatures (anaerobic metabolism, relatively lighter δ13C of ?28.6‰). Carbon isotopic signature and SOC content are found to be sensitive indicators of short‐ and long‐term soil erosion processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号