首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
赵强  刘海泉  卢瑛  孙晓红  潘迎捷  赵勇 《分析化学》2011,(11):1689-1694
以气相色谱-质谱联用(GC-MS)为分析方法,比较了液氮和75%甲醇(-80℃)两种溶液对副溶血性弧菌细胞的猝灭效果,以及氯仿、75%冰甲醇、水、甲醇-氯仿-水(10∶3∶1,V/V)、甲醇-氯仿-水(3∶1∶1,V/V)、甲醇-氯仿(1∶1,V/V)6种提取剂对副溶血性弧菌代谢物组的提取效果。结果表明,用75%甲醇(-80℃)猝灭副溶血性弧菌时,出现了代谢物泄漏现象,而液氮猝灭则不存在这个现象;检索发现,采用75%冰甲醇提取获得了47种代谢物,峰面积标准偏差为8.02%,其它5种提取剂获得代谢物种类少于40种,且重现性差。比较色谱峰数量、面积和重现性后发现,液氮猝灭、75%冰甲醇提取适于副溶血性弧菌代谢物组提取。  相似文献   

2.
采用四极杆-飞行时间液相色谱-质谱联用(Q-TOF LC/MS)方法,比较不同提取方法对水稻叶片中代谢物提取结果的影响,建立了HSS T3和XBridge Amide相结合的水稻叶片代谢轮廓分析方法。以检出峰数目、初步鉴定的代谢物数量、种类以及代谢途径为指标,探讨了甲醇-氯仿-水,甲醇-氯仿-氨水,甲醇-甲基叔丁基醚-水3种提取方法和不同色谱系统对水稻叶片中代谢物提取及分离的效果。结果表明,甲醇-氯仿-水对水稻叶片中代谢物的检出覆盖率最高,提取到的独有代谢物最多,分别为苯甲酸、木樨草素、α-亚麻酸、乌头酸、赤霉素A12醛、异牧荆素、L-谷氨酸;HSS T3和XBridge Amide色谱柱同时应用实现了对极性不同的代谢物较全面的检测,初步鉴定到16种有机酸、17种核苷酸、21种氨基酸、66种脂肪酸、11种磷脂、7种鞘脂,XBridge Amide在分离检测磷脂和鞘脂类化合物方面具有明显优势;鉴定到的代谢物所涉及的代谢途径为嘌呤代谢、嘧啶代谢、三羧酸循环、精氨酸代谢、脂肪酸代谢、磷脂代谢、鞘脂代谢、苯丙氨酸代谢以及维生素B2的合成。两种色谱柱初步鉴定到的代谢物和涉及的代谢途径均存在一定的互补性,本方法可望用于水稻代谢表型的差异性研究。  相似文献   

3.
建立了一种基于气相色谱-质谱联用的非靶标代谢组学方法,研究了不同品种水稻种子之间的代谢物差异。分别考察了3种提取方式及4种提取溶剂对水稻中代谢物提取效率的影响,发现涡旋提取方法及80%甲醇提取可获得较好的结果,该方法具有良好的稳定性和线性。将方法用于3种水稻种子(农大、稻花香、状元)的代谢轮廓分析,结果显示3种水稻的代谢特征不同。相对于农大种子,稻花香种子中脂肪酸(棕榈酸、油酸、亚油酸、硬脂酸)和糖类(葡萄糖、半乳糖、甘露醇)、天冬酰胺、柠檬酸的含量较高,此外,状元种子中乳酸含量也较高;稻花香种子中琥珀酸、果糖,状元种子中的苏氨酸含量低于农大种子。但相对于状元种子,稻花香中乳酸、琥珀酸、硬脂酸、果糖等物质含量较低。该方法可应用于不同品种、不同基因型或不同产地水稻种子的代谢表型分析,为改善水稻产量及质量等研究提供信息。  相似文献   

4.
建立了利用固相萃取-液相色谱-串联质谱同时测定水稻中17种细胞分裂素含量的分析方法。水稻样品经冷冻研磨,用甲醇-水(80 : 20, v/v)溶液浸提,经聚合物阳离子交换树脂(PCX)纯化,采用ZORBAX Extend-C18色谱柱,以甲醇和5 mmol/L甲酸铵水溶液为流动相进行梯度洗脱。采用电喷雾正离子模式电离,选择反应监测模式扫描,外标法定量。优化了色谱分离条件,研究了不同提取溶剂对17种细胞分裂素的提取效率,并考察了PCX固相萃取柱的纯化效果。结果表明,17种细胞分裂素在线性范围内的相关系数(r)均大于0.9984,方法检出限为0.01~0.05 ng/g。水稻根、茎和叶基质在0.2、1和5 ng/g 3个添加水平的平均回收率为60.2%~125.4%(n=6),相对标准偏差(RSD)为5.4%~29.7%。在水稻样品中检出5种细胞分裂素,其含量为0.02~0.93 ng/g。本方法纯化效果好、灵敏度高,可用于水稻中多种痕量细胞分裂素的同时分析。  相似文献   

5.
采用气相色谱-三重串联四级杆质谱联用技术测定了鱼组织中24种多环芳烃(PAHs).将冻干鱼组织样品加入同位素内标后,用加速溶剂萃取法(ASE)进行提取,提取液采用凝胶排阻色谱(GPC)和固相萃取(SPE)联用进行净化.采用二氯甲烷为提取溶剂,100℃下提取,以二氯甲烷作为GPC的流动相,在3.5 mL/min流速下,收...  相似文献   

6.
建立了气相色谱-质谱联用方法测定叶酸片中三氯丙酮溶剂的残留量。叶酸片研磨过筛后采用N,N二甲基甲酰胺溶剂超声提取,Rtx-w ax毛细管色谱柱分离。通过气相色谱-质谱全扫描总离子图定性,单离子监测模式定量检测叶酸片中三氯丙酮的残留量。在0.5~15.0μg/mL质量浓度范围内,三氯丙酮的浓度和色谱峰面积线性拟合关系良好(r=0.9998),方法检出限为0.15μg/mL,相对标准偏差2.0%,加标回收率为93.0%~105.3%。建立的方法,能有效消除复杂基质带来的干扰,适用于叶酸片中三氯丙酮残留量的检测。  相似文献   

7.
高效液相色谱串联质谱法检测腰果中黄曲霉毒素   总被引:1,自引:0,他引:1  
Bi R  Fan Z  Fu M 《色谱》2011,29(12):1155-1159
建立了腰果中4种黄曲霉毒素的高效液相色谱-串联质谱检测方法(HPLC-MS/MS)。样品用甲醇-水(8:2, v/v)溶液提取后用弗罗里硅土柱净化,5 mL丙酮-水-甲酸溶液(96:3.5:0.5, v/v/v)洗脱,氮吹至干,1 mL甲醇定容;在资生堂MG C18色谱柱(100 mm×3.0 mm, 3 μm)上梯度洗脱分离,然后采用电喷雾离子化三重四极杆串联质谱测定。实验结果表明,4种黄曲霉毒素在各自的线性范围内峰面积与其质量浓度线性关系良好,相关系数(r2)大于0.997;检出限(信噪比为3)为0.009~0.04 μg/kg,定量限(信噪比为10)为0.03~0.12 μg/kg;平均回收率为63.0%~78.5%,相对标准偏差为2.8%~9.1%,均符合痕量分析的要求。评价了基质效应,信号抑制/增强值为88.8%~99.4%,说明净化后的基质效应较小。该方法简单快速、准确可靠,可用于腰果中黄曲霉毒素的检测。  相似文献   

8.
刘晓霞  丁利  刘锦霞  张莹  黄志强  王利兵  陈波 《色谱》2010,28(11):1020-1025
建立了食品中6种人工合成甜味剂(甜蜜素、糖精钠、安赛蜜、阿斯巴甜、阿力甜、纽甜)的高效液相色谱-串联质谱检测方法。样品经甲醇-水溶液(1:1, v/v)提取,以C18柱为分离柱,0.1%(v/v)甲酸-5 mmol/L甲酸铵溶液/乙腈为流动相,经高效液相色谱分离,采用电喷雾串联四极杆质谱进行检测。结果表明,6种人工合成甜味剂在20~500 μg/L范围内定量离子对的响应峰面积和样品质量浓度之间有良好的线性关系(相关系数>0.998)。在3个添加水平下,样品平均回收率为81.3%~106.0%,相对标准偏差小于11%。该方法简单、灵敏、准确,可用于食品中6种人工合成甜味剂的同时检测。  相似文献   

9.
满正印  王全林  李和生  张爱芝  沈坚 《色谱》2015,33(3):267-274
建立了超高效液相色谱-三重四极杆质谱(UPLC-MS/MS)同时测定食品级聚苯乙烯(PS)和聚乙烯(PE)色母粒中33种初级芳香胺(PAAs)的检测方法。PS色母粒用二氯甲烷溶解,超声提取后加入甲醇沉淀,并将提取液过石墨化碳固相萃取柱净化;PE色母粒用二氯甲烷超声溶胀提取;将PS色母粒过柱液和PE色母粒提取液浓缩,浓缩液用甲醇-水(1:9, v/v)定容至2 mL, 0.22 μm膜过滤后上机检测。采用BEH Phenyl色谱柱(100 mm×2.1 mm, 1.7 μm),以0.07%(v/v)甲酸甲醇溶液-水(1:9, v/v)为流动相,梯度洗脱分离,UPLC-MS/MS多反应监测(MRM)模式检测,同位素内标法定量。优化了色谱分离条件、质谱碎裂电压、碰撞能量等,并考察了提取时间、提取溶剂、浓缩方式等对回收率的影响。33种PAAs的方法检出限为6~10 μg/kg,定量限为20~30 μg/kg, 2种不同基质样品在20、100、200 μg/kg等3个添加水平的平均回收率为61.3%~119.8%,相对标准偏差(RSD)为1.4%~14.8%。本方法操作简便、快速、准确、灵敏度高,能满足相关测定要求。  相似文献   

10.
液相色谱-三重串联四极杆质谱测定粮油中的黄曲霉毒素   总被引:5,自引:0,他引:5  
Wang X  Li P  Yang Y  Zhang W  Zhang Q  Fan S  Yu L  Wang L  Chen X  Li Y  Jiang J 《色谱》2011,29(6):517-522
建立了超声提取-液相色谱-电喷雾三重串联四极杆质谱测定玉米、大米、大豆等粮油固体样品中黄曲霉毒素B1、B2、G1和G2(AFB1、AFB2、AFG1和AFG2)的方法。分析前对样品进行超声提取,优化得到最佳超声提取条件: 溶剂为甲醇-水(含40 g/L NaCl) (80:20, v/v)溶液、料液比为1:3(g:mL)、温度为50 ℃、时间为3 min。然后对提取的样品进行免疫亲和特异性净化。最后与液相色谱-电喷雾三重串联四极杆质谱联用,使用C18反相色谱柱,流动相为甲醇-10 mmol/L乙酸铵水溶液梯度洗脱,以黄曲霉毒素M1(AFM1)作为内标进行定量测定。结果表明,AFB1、AFB2、AFG1和AFG2的检出限分别为0.002、0.004、0.004和0.012 μg/kg。方法的加标回收率为87%~111%,日内相对标准偏差(RSD)和日间RSD分别不大于6.7%和5.6%。实验结果表明该方法可以有效地降低基质效应的影响,相比于外标法能极大地提高方法的准确度。  相似文献   

11.
An analytical procedure using accelerated solvent extraction and gas chromatography with an electron capture detector has been optimized to simultaneously determine the residue of two insecticides (diazinon and EPN) and one fungicide (isoprothiolane) in polished rice and was confirmed by GC-mass spectrometry. Several parameters, including temperature, pressure, solvent ratio, cell size and cell cycle, were thoroughly investigated to find the optimal extraction conditions. The average recoveries of the three pesticides were between 82.7 and 126.4% at spiking levels of 0.1 and 0.5 ppm. The relative standard deviations were less than 7% for all of the recovery tests. The optimum accelerated solvent extraction operating conditions were 100 degrees C, 1500 atm, acetone-n-hexane (20:80 v/v) as the extraction solvent, two cycles, and a cell size of 33 ml. The total extraction time was approximately 20 min. The optimized procedure has also been applied to the determination of diazinon, isoprothiolane and EPN in real rice samples. In conclusion, accelerated solvent extraction was used for the first time for the analysis of diazinon, isoprothiolane and EPN in polished rice and offers the possibility of a fast and simple process for obtaining a quantitative extraction of the studied pesticides.  相似文献   

12.
An analytical method based on an optimized solid-phase extraction procedure and followed by high-performance liquid chromatography (HPLC) separation with diode array detection was developed and validated for the simultaneous determination of phenolic acids (gallic, protocatechuic, 4-hydroxy-benzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, and cinnamic acids), flavanols (catechin and epicatechin), flavonols (myricetin, quercetin, kaempferol, quercetin-3-O-glucoside, hyperoside, and rutin), flavones (luteolin and apigenin) and flavanones (naringenin and hesperidin) in rice flour (Oryza sativa L.). Chromatographic separation was carried out on a PerfectSil Target ODS-3 (250 mm × 4.6 mm, 3 μm) column at temperature 25°C using a mobile phase, consisting of 0.5% (v/v) acetic acid in water, methanol, and acetonitrile at a flow rate 1 mL min(-1) , under gradient elution conditions. Application of optimum extraction conditions, elaborated on both Lichrolut C(18) and Oasis HLB cartridges, have led to extraction of phenolic acids and flavonoids from rice flour with mean recoveries 84.3-113.0%. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 5) and inter-day precision (n = 4) revealed relative standard deviation (RSD) <13%. The optimized method was successfully applied to the analysis of phenolic acids and flavonoids in pigmented (red and black rice) and non-pigmented rice (brown rice) samples.  相似文献   

13.
A new method for the simultaneous determination of three fluoroquinolones (FQs) enrofloxacin (ENRO) ciprofloxacin (CIPRO) and sarafloxacin (SARA) in table eggs has been developed, applying pressurized liquid extraction (PLE) and liquid chromatography (LC) with fluorescence detection (LC-FLD). The influence of several extraction parameters (e.g. solvent mixture, temperature and extraction time) on FQs extraction efficiency and coextracted matrix interferents was evaluated using fortified control eggs and matrix matched standard curves. The results showed that FQs extraction efficiency depends mainly on solvent composition and the optimum extraction mixture was found to be phosphate 50mM, pH 3.0/acetonitrile (50:50, v/v). The optimized procedure employed 50% flush volume, 5min of static time and three extraction cycles at 70 degrees C and 1500psi. Method validation was performed according to the guidelines of the Directive 96/23/EC, using control egg samples, fortified with the target FQs in the range 50-1000ngg(-1) and applying the optimized extraction conditions on three different days, providing recoveries between 67-90% with RSDs lower than 11% in all cases. The decision limit (CCalpha) and detection capability (CCbeta) of the analytical method were found to be within the range 17-24ngg(-1) and 30-41ngg(-1), respectively. The method was successfully applied to the determination of ENRO and its metabolite CIPRO in incurred egg samples from ENRO-treated hens and LC-MS has been used and for confirmatory purposes.  相似文献   

14.
陈国  孙亚米  杨挺  吴银良 《色谱》2012,30(6):555-559
建立了黄瓜和苹果中氟啶虫酰胺及其3种代谢产物[N-(4-trifluoromethylnicotinoyl)glycine(TFNG)、4-tri-fluoromethylnicotinic acid(TFNA)和4-trifluoromethylnicotinamide(TFNA-AM)]同时测定的液相色谱-串联质谱分析方法。样品用磷酸盐缓冲液提取两次,调节pH值至1.5~2.0后,再用乙酸乙酯提取,液相色谱-串联质谱分析。采用Acquity BEH C18色谱柱分离,0.1%甲酸水-甲醇作为流动相进行梯度洗脱,电喷雾正离子(ESI+)模式电离,多反应监测(MRM)模式检测,外标法定量。氟啶虫酰胺、TFNG、TFNA和TFNA-AM的检出限分别为0.17、0.20、0.35和0.60 μg/kg。在黄瓜和苹果样品中添加5.0~2000 μg/kg水平的氟啶虫酰胺、TFNG、TFNA和TFNA-AM,其平均添加回收率在82.9%~104.1%范围内,批内分析相对标准偏差(RSD)在3.6%~6.9%之间。4种物质的峰面积与其浓度在0.50~200 μg/L范围内均呈良好的线性关系,线性回归系数均大于0.998。前处理步骤仅用有机溶剂6 mL。整个方法具有高灵敏度、准确、稳定的特点。  相似文献   

15.
In this study, a liquid chromatography mass spectrometry (LC/MS)-based metabolomics protocol was optimized for quenching, harvesting, and extraction of metabolites from the human pancreatic cancer cell line Panc-1. Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in water were compared for sample harvesting. Four different extraction methods were compared to investigate the efficiency of intracellular metabolite extraction, including pure acetonitrile, methanol, methanol/chloroform/H2O, and methanol/chloroform/acetonitrile. The separation efficiencies of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) with UPLC-QTOF-MS were also evaluated. Global metabolomics profiles were compared; the number of total detected features and the recovery and relative extraction efficiencies of target metabolites were assessed. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Direct scraping after flash quenching with liquid nitrogen was chosen to harvest Panc-1 cells which allowed for samples to be stored before extraction. Methanol/chloroform/H2O was chosen as the optimal extraction solvent to recover the highest number of intracellular features with the best reproducibility. HILIC had better resolution for intracellular metabolites of Panc-1 cells. This optimized method therefore provides high sensitivity and reproducibility for a variety of cellular metabolites and can be applicable to further LC/MS-based global metabolomics study on Panc-1 cell lines and possibly other cancer cell lines with similar chemical and physical properties.
Figure
Optimized harvesting, extraction and analytical protocols for cell metabolomics analysis.  相似文献   

16.
The pressurized liquid extraction (PLE) followed by dispersive liquid–liquid micro‐extraction (DLLME) has been developed for extraction of volatile components in tobacco. 35 volatile components were detected by gas chromatography mass spectrometry (GC‐MS). Methanol–methyl tert‐butyl ether (MTBE) (8:2, v/v) was selected as PLE extraction solvent. The optimized DLLME procedure, 3 mL of pure water and 1.0 mL tobacco extract solution, 40 μL of chloroform as extraction solvent, 0.5 mL of acetonitrile as disperser solvent, was validated. Under the optimum conditions, the enrichment factors were in the range of 96‐159. The limits of detection were between 0.14 and 0.33 μg/kg. The repeatability of the proposed method, expressed as relative standard deviation, varied between 4.3 and 7.5% (n = 6). The recoveries of the analytes evaluated by fortification of tobacco samples were in the range of 84.7‐96.4%. Compared with the conventional sample preparation method for determination of volatile components in tobacco, the proposed method was quick and easy to operate, and had high‐enrichment factors and low consumption of organic solvent.  相似文献   

17.
An analytical method was developed to quantitatively determine pharmaceuticals in biosolid (treated sewage sludge) from wastewater treatment plants (WWTPs). The collected biosolid samples were initially freeze dried, and grounded to obtain relatively homogenized powders. Pharmaceuticals were extracted using accelerated solvent extraction (ASE) under the optimized conditions. The optimal operation parameters, including extraction solvent, temperature, pressure, extraction time and cycles, were identified to be acetonitrile/water mixture (v/v 7:3) as extraction solvent with 3 extraction cycles (15 min for each cycle) at 100 °C and 100 bars. The extracts were cleaned up using solid-phase extraction followed by determination by liquid chromatography coupled with tandem mass spectrometry. For the 15 target pharmaceuticals commonly found in the environment, the overall method recoveries ranged from 49% to 68% for tetracyclines, 64% to 95% for sulfonamides, and 77% to 88% for other pharmaceuticals (i.e. acetaminophen, caffeine, carbamazepine, erythromycin, lincomycin and tylosin). The developed method was successfully validated and applied to the biosolid samples collected from WWTPs located in six cities in Michigan. Among the 15 target pharmaceuticals, 14 pharmaceuticals were detected in the collected biosolid samples. The average concentrations ranged from 2.6 μg/kg for lincomycin to 743.6 μg/kg for oxytetracycline. These results indicated that pharmaceuticals could survive wastewater treatment processes, and accumulate in sewage sludge and biosolids. Subsequent land application of the contaminated biosolids could lead to the dissemination of pharmaceuticals in soil and water environment, which poses potential threats to at-risk populations in the receiving ecosystems.  相似文献   

18.
Li H  Chen B  Zhang Z  Yao S 《Talanta》2004,63(3):659-665
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40 s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20 ml g−1 sample); and for chlorogenic acid, 50% micorwave power, 30 s irradiation, and 20% aqueous methanol (20 ml g−1 sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C18 chromatographic column (, i.d. 5 μm), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240 nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.  相似文献   

19.
Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).  相似文献   

20.
Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid–base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid–base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号