首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
等离子体电子温度的发射光谱法诊断   总被引:7,自引:0,他引:7  
电子温度是表征等离子体性质的一个重要参数。由于等离子体放电过程非常复杂,要实时准确测定其电子温度值非常困难。发射光谱法作为一种等离子体诊断技术,因其所使用的仪器相对简单,并采用非接触测量,灵敏度高,响应速度快,可广泛地应用于各种等离子体性质的研究和参数的诊断。文章介绍了测定等离子体电子温度的双谱线法、多谱线斜率法、等电子谱线法、Saha-Boltzmann法、谱线绝对强度法等多种发射光谱法,同时综述了这些方法在等离子体电子温度诊断中的应用,旨在为实际过程中选择合适的等离子体诊断方法提供参考。  相似文献   

2.
一、引言在X光激光(XRL)和惯性约束聚变(ICF)研究中,等离子体电子温度和密度是表征等离子体状态的重要参数之一。虽然等离子体辐射各谱线强度与发射源的温度,密度和离子丰度直接相关,但要得到各谱线的绝对强度是很困难的,因为用于测量谱线强度探测器的绝对刻度相当困难。早在70年代初,苏联Aglitskii等首次用类He离子谱线强度比测量等离子体电子温度和密度。由于用该方法测量等离子体电子温度和密度可避免对探测器绝对  相似文献   

3.
引言等离子体的温度和粒子密度是等离子体的两大基本参数,其中温度是考察等离子体的特性及使操作条件最佳化的关键。等离子体的温度有气体动态温度,激发温度,电子温度和电离温度。气体动态温度有分子旋转谱线法和Doppler加宽法,激发温度有两谱线法和Boltzmann斜率法,电子温度有粒子密  相似文献   

4.
在空气中利用Nd: YAG脉冲激光诱导金属Cu靶,产生激光等离子体羽,并获得等离子体羽的空间谱;研究了空间谱线结构;分析了不同空间位置处电子温度和电子密度的空间演化规律;并对等离子体光谱的特性和产生机制进行了讨论. 结果表明:谱线结构、谱线强度和等离子体的电子温度及电子密度都与空间位置变化密切相关,特征谱强度最大值出现在距靶面0.75-1.0mm的空间位置处,此处CuⅠ谱线相对强度最强,在1.25 mm空间位置处电子温度比周边的电子温度偏低,但此处电子密度反而升高,这种现象可以由级联效应得到解释。  相似文献   

5.
空气中YAG激光诱导Cu等离子体空间特性的研究   总被引:1,自引:0,他引:1  
在空气中利用Nd:YAG脉冲激光诱导金属Cu靶,产生激光等离子体羽,并获得等离子体羽的空间谱;研究了空间谱线结构;分析了不同空间位置处电子温度和电子密度的空间演化规律;并对等离子体光谱的特性和产生机制进行了讨论.结果表明:谱线结构、谱线强度和等离子体的电子温度及电子密度都与空间位置变化密切相关,特征谱强度最大值出现在距靶面0.75~1.0mm的空间位置处,此处CuⅠ谱线相对强度最强,在1.25mm空间位置处的电子温度比周边的电子温度偏低,但此处电子密度反而升高,这种现象可以由级联效应得到解释.  相似文献   

6.
等电子法测量小能量激光打靶等离子体电子温度   总被引:4,自引:0,他引:4       下载免费PDF全文
以低Z的CHO薄膜作为样品靶,在星光激光装置上以小能量激光辐照样品靶产生温度较低的等离子体,采用每毫米2400线的平焦场光栅谱仪测量等离子体发射的碳和氧离子发射谱线强度比,并与理论计算相应线强比较,获得了电子温度,建立了等电子法测量较低温度(100eV左右)等离子体电子温度的诊断技术. 关键词: 电子温度 激光等离子体 等电子x射线谱法  相似文献   

7.
利用碰撞辐射平衡和离化平衡下的等离子体X-射线发射谱理论,对铁元素L壳层等离子体,在中高能区电子温度范围内,以碰撞激发、离化、辐射复合和双电子复合等动力学过程为主的Fe24 、Fe23 和Fe22 三离子体系X射线谱进行了理论模拟,得到其X射线光谱图,反映出X射线谱辐射波长、辐射强度同电子温度、密度之间的关系,得到了等离子体诊断所关心的电子温度、密度参量的定性关系.  相似文献   

8.
利用碰撞辐射平衡和离化平衡下的等离子体X射线发射谱理论,对镁元素等离子体在中低电子密度、中高电子温度范围内,以碰撞激发、共振激发、离化、辐射复合和双电子复合等动力学过程为主的Mg10 、Mg9 和Mg8 三离子体系X射线谱进行了理论模拟,得到其X射线光谱,反映出X射线辐射谱波长、强度同电子温度之间的关系,得到了等离子体诊断所关心的电子温度的定性关系.  相似文献   

9.
以激光烧蚀快脉冲放电激发土壤为例,研究了激光烧蚀快脉冲放电等离子体技术产生的土壤等离子体的电子数密度和温度。根据实验测得的Si原子和离子谱线的强度和萨哈玻尔兹曼方程,计算了等离子体的电子温度,并从分析Si I 250.69nm谱线的斯塔克展宽中导出了等离子体的电子数密度。与使用同样激光能量激发的激光等离子体相比,激光烧蚀快脉冲放电激发等离子体的电子数密度和温度都明显增加,与观察到的光谱信号强度是一致的。  相似文献   

10.
室温,常压下,利用Nd∶YAG脉冲激光器产生的波长为1 064 nm, 脉宽12 ns,能量分别180, 230和280 mJ的脉冲激光冲击Ti靶,使用中阶梯光栅光谱仪检测了三种激光能量下对应的光谱。调节延时器DG645的延迟时间,检测了延迟0~500 ns时间范围内Ti等离子体对应激光能量下的发射光谱,分析光谱,可以得到了九条不同的的TiⅠ 和TiⅡ等离子体谱线,证明在该实验条件下,Ti靶能够充分吸收能量电离且离子谱线具有不同的演化速率,利用Saha-Boltzmann法计算并分析Ti等离子体电子温度,实验结果表明:相同的延迟时间,激光能量越大,谱线相对强度越大,电子温度越高,谱线相对强度的变化量随激光能量的变化量增大而增大;在延时0~150 ns内,三种激光能量下的等离子体电子温度和谱线的相对强度都随延迟时间的增加而快速下降,其中280 mJ激光能量下的等离子体电子温度和谱线强度下降速率较快;在150~250 ns范围内,电子温度和谱线强度均随延迟时间的增加有一个缓慢的上升,180 mJ激光能量下的等离子体电子温度和谱线强度的上升速率较快。250~500 ns范围内,三种激光能量下的电子温度和谱线强度均随延迟时间的增加而缓慢下降。  相似文献   

11.
在大气环境下利用中心波长800nm、脉宽为30fs的激光聚焦在铝靶上,测定了激光诱导铝等离子体中铝原子的时间分辨发射谱。在局部热平衡条件近似下,根据实验测定的谱线相对强度得到了等离子体的电子温度;研究了激光脉冲能量对等离子体电子温度的影响和等离子体电子温度的时间演化特性。同时,实验发现了394.4nm和396.1nm两条铝原子谱线存在较强的自吸收效应,实验结果表明随着激光脉冲能量的减少和延时的增加,自吸收现象逐渐消失。  相似文献   

12.
邵云峰 《计算物理》1992,9(1):59-62
本文详细叙述了利用He-like离子的特征谱线诊断等离子体的电子密度和电子温度的方法,给出了共振线与双电子伴线的强度比随电子温度的变化曲线和共振线与互组合线的强度比随电子密度的变化曲线。并且根据实验测得的上述两组谱线的强度比,定出激光产生等离子体的电子温度和电子密度。  相似文献   

13.
王莉  周彧  傅院霞  徐丽 《强激光与粒子束》2020,32(6):061003-1-061003-6
常温常压下,采用波长532 nm的Nd:YAG纳秒激光器激发诱导空气中的铝合金,由高分辨率的光谱仪和ICCD对等离子体发射光谱采集和实现光电转换。研究激光能量、ICCD门延迟和聚焦透镜到样品表面的距离(lens-to-sample distance,LTSD)对谱线信号强度和等离子体电子温度的影响,并分析了产生影响的物理机制。结果表明,固定ICCD门延迟和LTSD,随着激光能量的增大,谱线强度和电子温度均增大;计算结果表明,当激光能量从20 mJ增加到160 mJ时,原子谱线Al I 396.15 nm,Mg I 518.36 nm,离子谱线Mg II 279.54 nm谱线强度相较于20 mJ分别提高了12.83,6.45,10.56倍。固定激光能量和LTSD,ICCD门延迟在100~4000 ns范围内变化时,随着延迟的增加,谱线强度和等离子体电子温度均呈指数形式衰减。固定ICCD门延迟和激光能量,采用焦距为75 mm的聚焦透镜,研究了LTSD对等离子体参数的影响机理。结果表明,聚焦透镜到样品的距离对等离子体的谱线强度和电子温度有较大的影响。等离子体的特征谱线强度和等离子体的电子温度的变化规律基本一致,分别在聚焦透镜到样品表面的距离为73 mm和79 mm处取得峰值,并在73 mm处对应最大值。  相似文献   

14.
利用Nd: YAG脉冲激光在空气中烧蚀金属Cu靶,获得等离子体光谱;采用改变离焦量的方法,研究了离焦量的变化对谱线结构及谱线强度的影响;分析了离焦量分别为1mm、0mm和-2mm时,沿靶面法线方向不同空间距离处电子温度的演化规律;并对等离子体光谱的特性和产生机制进行了讨论. 结果表明,谱线结构、谱线强度和等离子体的电子温度都与离焦量的变化密切相关,聚焦点在-2mm处CuⅠ谱线相对强度出现峰值,电子温度数值最大;聚焦点在-0.5mm和-1.0mm附近谱线相对强度遽然降低的现象是由于等离子体的屏蔽效应造成的.  相似文献   

15.
利用同轴空心阴极放电装置,产生氦低温等离子体。通过对等离子体的发射光谱进行测量和计算,研究放电功率以及氦气压强对等离子体的电子激发温度的影响。结果表明:氦低温等离子体的发射光谱主要由连续谱和原子谱线构成,放电功率和压强对谱线的强度具有明显影响。压强的变化不仅影响电子从电场中获得的能量,还会影响电子与原子的碰撞频率,从而导致电子激发温度随着氦气压强的增大,出现先上升后下降的变化趋势。  相似文献   

16.
刘月华  陈明  刘向东  崔清强  赵明文 《物理学报》2013,62(2):25203-025203
采用高功率抽运调Q激光器分别在真空和空气中烧蚀Ti-Al合金靶材激发等离子体,研究了在不同气体压强下透镜到靶材的距离对等离子体参数的影响机理对于焦距为111mm的聚焦透镜,当透镜到靶材距离小于透镜焦距时,随着距离逐渐接近焦距,真空和空气中电子温度、电子密度和谱线强度均逐渐增强.当透镜到靶材距离大于透镜焦距时,真空中,电子温度和电子密度仍然继续升高,而谱线强度却变化不大.空气中,等离子体参数却有不同的演化特性:等离子体的电子温度、电子密度和谱线强度在透镜到靶材距离为107 mm时达到最大值,当距离继续增大时,均呈现出迅速下降的趋势,当透镜到靶材距离大于112mm时,电子温度和电子密度又有明显上升,特征谱线强度却大幅下降.  相似文献   

17.
高启  张传飞  周林  李正宏  吴泽清  雷雨  章春来  祖小涛 《物理学报》2014,63(9):95201-095201
以"强光一号"Z箍缩装置10174发次光谱诊断实验结果为例,描述了一种对Z箍缩等离子体X辐射光谱分离提纯、诊断的方法.对连续辐射谱和特征辐射线谱进行分离,并从连续辐射谱和特征辐射线谱中提取了等离子体电子温度信息.结果显示:等离子体连续谱主要由等离子体中心的高温区(Te=290.7 eV±1.2 eV)和温度较低的壳层区域(Te=95.3 eV±8.3 eV)两部分叠加而成;特征辐射线谱主要反映了等离子体中心的高温区信息,根据非局域热动平衡模型计算提取的电子温度约为299—313 eV,与连续谱诊断结果基本符合.  相似文献   

18.
在长度为20 cm的石英毛细管内利用两个边缘锋利的中空的针型电极之间的氩气放电产生了高电子密度的大气压等离子体。利用发射光谱对所获得的等离子体的几个重要参数进行了诊断。利用计算机谱线拟合法合成了300 nm附近OH(A-X)的(0-0)转动谱带并通过与测量谱线的比较确定了等离子体的气体温度,根据Hβ谱线Stark展宽法计算了等离子体的电子密度,采用玻尔兹曼曲线斜率法依据测得的有关氩的发射光谱估算了等离子体的电子温度。研究结果表明,这种石英毛细管内弧光放电等离子体的气体温度约为(1 100±50)K;电子密度数量级在1014 cm-3;电子温度约为(14 515±500)K。  相似文献   

19.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   

20.
本实验使用2.45 GHz微波(100~200 W)激励产生低压(1~4 kPa)氢等离子体,通过光纤光谱仪探测氢等离子体的发射光谱,并分析了特征谱线分布及谱线强度随压强、功率的变化情况,计算了氢等离子体的电子激发温度.实验结果表明,压强由1 kPa增加至4 kPa,谱线强度减小;功率由100 W增大至200 W,谱线强度增大.随着压强的增大,电子激发温度减小或先减小后增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号