首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 421 毫秒
1.
采用波长532 nm的Nd:YAG纳秒激光器激发诱导空气中的玻璃,由高分辨率的光谱仪和ICCD对等离子体发射光谱采集和实现光电转换.以Si I 288.20 nm、Ca II 393.37 nm两条谱线作为分析线,研究ICCD门延迟,ICCD门宽、聚焦透镜到样品表面的距离(LTSD)对等离子体信号强度和信噪比的影响,确定最优化的实验参数:ICCD门宽1400 ns,ICCD门延迟500 ns,LTSD为84.5 mm.在最优化的实验条件下以Ca元素的六条离子谱线(315.89 nm, 317.93 nm, 370.60 nm, 373.69 nm, 393.37 nm, 396.85 nm)为分析线,计算得到玻璃等离子体的电子温度和电子密度分别20060 K, 8.256×10~(16) cm~(-3).  相似文献   

2.
利用具有时间分辨功能的ICCD相机对空气中激光诱导击穿合金钢产生的等离子体成像,同时采集了等离子体产生的发射光谱,针对焦距为100mm的聚焦透镜,研究了透镜到样品的距离(LTSD)对发射光谱强度、等离子体温度和等离子体形态的影响,并分析了产生影响的物理机制,对透镜到样品表面5个不同距离下等离子体光谱信号在样品表面垂直方向上的空间演变进行了分析。结果表明,透镜到样品的距离对等离子体的光谱信号、等离子体形态以及空间分布具有较大的影响。等离子体图像的像素强度与等离子体温度的变化规律基本一致,分别在透镜距离样品表面92mm和107mm处取得峰值,而92mm处对应最大值。对样品表面垂直方向上等离子体光谱信号的空间分布研究结果表明,不同聚焦位置下所产生的等离子体温度的空间分布不同,等离子体中不同谱线的光谱强度在空间的演变规律也有差别。  相似文献   

3.
采用波长为532nm的单脉冲激光诱导两种金属样品铜和锌,产生等离子光谱,固定激光能量40mJ、门宽100ns、光谱仪入射狭缝0.1mm、ICCD增益100等参数,研究金属样品物理化学特性对汇聚透镜焦点到样品表面距离、ICCD采集延迟等最优化实验参数的影响.实验中分别选取铜样品Cu(I)521.82nm和锌样品Zn(I)481.053nm谱线作为LIBS信号,实验测定的透镜焦点在距样品表面不同距离处的LIBS信号强度,结果表明铜和锌样品的聚焦透镜焦点分别在样品表面内距表面的距离为5mm和5.5mm时得到光谱信号强度最大;铜和锌的ICCD探测延时分别为1300ns和1100ns时等离子体光谱信号的信噪比最大并具有可观测的强度,依据铜和锌样品物理化学特性的差异对实验结果进行了合理的分析与讨论,为后续研究金属样品LIBS技术的基底效应、纳米结构增强激光诱导击穿光谱机理提供数据参考.  相似文献   

4.
利用波长为1 064 nm,最大能量为500 mJ的Nd∶YAG脉冲激光器在室温,一个标准大气压下对Mg合金冲击,改变激光能量,得到相应的Mg等离子体特征谱线。分析谱线,发现谱线有不同的演化速率,同时得到了MgⅠ,MgⅡ离子谱线,证明此实验条件下,激光能量足够Mg合金靶材充分电离。选择了相对强度较大的MgⅠ 383.2 nm, MgⅠ 470.3 nm, MgⅠ 518.4 nm三条激发谱线,利用这些发射谱线的相对强度计算了等离子体的电子温度,激光能量为500 mJ时,等离子体温度为1.63×104 K。实验结果表明:在本实验条件下,Mg原子可以得到充分激发;在200~500 mJ激光能量范围内,等离子体温度随着激光能量的降低而衰减,在350~500 mJ激光能量范围内的等离子体温度随激光能量的变化速度十分明显,200~350 mJ时等离子体温度变化速度迅速减缓;激光能量为300 mJ时,谱线相对强度明显减弱,低于350和250 mJ的谱线相对强度,不符合谱线相对强度会随着激光能量提高而上升的变化趋势,证明发生了等离子体屏蔽现象,高功率激光产生的等离子体隔断了激光与材料之间的耦合。此时的等离子体温度明显升高,不符合变化趋势,这是由于在发生等离子体屏蔽现象时,激光能量被等离子体吸收,导致等离子体温度上升。  相似文献   

5.
杨雪  李苏宇  姜远飞  陈安民  金明星 《物理学报》2019,68(6):65201-065201
研究了不同温度下聚焦透镜到样品表面距离对激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)强度的影响,使用Nd:YAG脉冲激光激发样品并产生等离子体,探测的等离子体发射的光谱线为Cu(Ⅰ)510.55 nm,Cu(Ⅰ)515.32 nm和Cu(Ⅰ)521.82 nm.使用透镜的焦距为200 mm,测量的聚焦透镜到样品表面距离的范围为170—200 mm,样品温度从25℃升高到270℃,激光能量为26 mJ.总体上,升高样品温度能有效地提高LIBS光谱的辐射强度.在25℃和100℃时,光谱强度随着聚焦透镜到样品表面距离的增加而单调增加;在样品温度更高(150, 200, 250和270℃)时,光谱强度随着距离的增加出现先升高而后又降低的变化.同时,在样品接近焦点附近,随着样品温度的升高,LIBS光谱强度的变化不明显,还可能出现光谱强度随着样品温度升高而降低的情况,这在通过升高样品温度来提高LIBS光谱强度中特别值得我们注意.为了更进一步了解这两个条件对LIBS的影响,计算了等离子体温度和电子密度,发现等离子体温度和电子密度的变化与光谱强度的变化几乎一致,更高样品温度下产生的等离子体温度和电子密度更高.  相似文献   

6.
刘月华  陈明  刘向东  崔清强  赵明文 《物理学报》2013,62(2):25203-025203
采用高功率抽运调Q激光器分别在真空和空气中烧蚀Ti-Al合金靶材激发等离子体,研究了在不同气体压强下透镜到靶材的距离对等离子体参数的影响机理对于焦距为111mm的聚焦透镜,当透镜到靶材距离小于透镜焦距时,随着距离逐渐接近焦距,真空和空气中电子温度、电子密度和谱线强度均逐渐增强.当透镜到靶材距离大于透镜焦距时,真空中,电子温度和电子密度仍然继续升高,而谱线强度却变化不大.空气中,等离子体参数却有不同的演化特性:等离子体的电子温度、电子密度和谱线强度在透镜到靶材距离为107 mm时达到最大值,当距离继续增大时,均呈现出迅速下降的趋势,当透镜到靶材距离大于112mm时,电子温度和电子密度又有明显上升,特征谱线强度却大幅下降.  相似文献   

7.
室温,常压下,利用Nd∶YAG脉冲激光器产生的波长为1 064 nm, 脉宽12 ns,能量分别180, 230和280 mJ的脉冲激光冲击Ti靶,使用中阶梯光栅光谱仪检测了三种激光能量下对应的光谱。调节延时器DG645的延迟时间,检测了延迟0~500 ns时间范围内Ti等离子体对应激光能量下的发射光谱,分析光谱,可以得到了九条不同的的TiⅠ 和TiⅡ等离子体谱线,证明在该实验条件下,Ti靶能够充分吸收能量电离且离子谱线具有不同的演化速率,利用Saha-Boltzmann法计算并分析Ti等离子体电子温度,实验结果表明:相同的延迟时间,激光能量越大,谱线相对强度越大,电子温度越高,谱线相对强度的变化量随激光能量的变化量增大而增大;在延时0~150 ns内,三种激光能量下的等离子体电子温度和谱线的相对强度都随延迟时间的增加而快速下降,其中280 mJ激光能量下的等离子体电子温度和谱线强度下降速率较快;在150~250 ns范围内,电子温度和谱线强度均随延迟时间的增加有一个缓慢的上升,180 mJ激光能量下的等离子体电子温度和谱线强度的上升速率较快。250~500 ns范围内,三种激光能量下的电子温度和谱线强度均随延迟时间的增加而缓慢下降。  相似文献   

8.
光谱信号增强是提高激光诱导击穿光谱技术分析性能的重要手段之一,对等离子体进行空间约束由于装置简单且约束效果好而常被采用,等离子体的特性会直接影响空间约束的效果,而等离子体的特性与实验系统中激光的聚焦情况密切相关,为研究激发光源的聚焦情况对半球形空腔约束等离子体光谱增强特性的影响,通过控制透镜到样品之间的距离(LTSD)来改变激光的聚焦位置,分别在无约束和有半球形空腔约束两种实验条件下,烧蚀合金钢产生等离子体,采集15个不同LTSD位置时等离子体的时间演变光谱,得到谱线强度和增强倍数随着LTSD和采集延时的二维空间分布图。研究结果发现:无约束情况下,谱线强度分别在LTSD为94和102 mm时出现峰值,在采集延时小于8 μs时,谱线强度的最大值在LTSD为94 mm的位置,采集延时大于8 μs后,谱线强度的最大值出现在LTSD为102 mm的位置;当用半球空腔约束等离子体,谱线强度先后在采集延时范围为4~10和12~15 μs出现第一次增强和第二次增强。谱线强度出现第二次增强的主要原因是被半球腔内壁反射的冲击波与等离子体相互作用后会继续向前传播,遇到另一侧的腔壁再次被反射,进而对等离子体产生二次压缩。分析增强倍数随LTSD和采集延时的二维变化关系发现,第一次增强的最大增强倍数随LTSD的变化没有明显规律,增强倍数在2~6之间波动;谱线第二次增强时的增强倍数相对较高,最大增强倍数随着LTSD变化呈现出先增大再减小,然后再小幅增加后降低的变化规律,在LTSD为96 mm时达到最大值,两条谱线的最大增强倍数约为6倍。分析出现最大增强倍数对应的延迟时间发现,第一次增强出现的最优延迟时间在6~9 μs之间变化,当LTSD在85~93 mm范围时,最优延迟时间保持不变,当LTSD在94~105 mm时,出现先降低再增大的变化规律;第二次增强出现的延迟时间主要在14~15 μs,随着LTSD的变化没有明显的变化规律。  相似文献   

9.
利用Nd:YAG激光(波长1 064 nm,脉宽10 ns)烧蚀金属Cu靶获得等离子体 .改变激光脉冲能量,观测到Cu的原子谱线和离子谱线随激光脉冲能量有不同的变化关系, 但都在330 mJ/pulse时,谱线强度达到最大,随后在330 mJ~370 mJ/pulse间出现一小平台 ,能量继续增加,各谱线强度减小.同时,使用烧蚀Cu靶产生的五条原子谱线(465.11 nm,5 10.55 nm,515.32 nm,521.82 nm,529.25 nm)的相对强度,在局部热力学平衡近似下,利用B oltzmann图的最小二乘法拟合,测定了不同激光能量下Cu等离子体的电子温度.随激光能量的增加,电子温度近似单调地从1.02×104 K上升到1.46×104 K后,反而有所下降.  相似文献   

10.
为了综合比较单双脉冲激光诱导击穿光谱技术(LIBS)在液体中重金属元素的检测效果,利用自建的液相射流单-双脉冲LIBS技术装置,对AlCl3水溶液中的Al元素LIBS特性进行测量和分析。实验中使用两台532 nm Nd∶YAG激光器作为激发光源,等离子体辐射信号通过光谱仪和ICCD进行采集。实验研究了单脉冲下Al(396.15 nm)发射谱线的谱线强度随激光能量、ICCD门延时、门宽之间的变化关系,获得了最优化实验参数激光能量为50 mJ,ICCD门延迟为1 200 ns,门宽为150 ns。在相同的实验条件下,实验考察了Al(369.15 nm)发射谱线的谱线强度随双脉冲之间的延时,激光总能量,ICCD门延时的变化关系,获得了最优化实验参数为两双脉冲之间的延时为1 000 ns,激光总能量为50 mJ,ICCD门延时为1 100 ns。单脉冲和双脉冲条件下获得重金属Al的LIBS检测限分别为26.79和10.80 ppm,双脉冲LIBS技术使元素检测限下降2倍多。实验结果表明双脉冲可以提升LIBS技术的探测灵敏度,为LIBS技术应用于水体中重金属快速检测提供了依据。  相似文献   

11.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   

12.
采用波长为1064 nm的Nd:YAG脉冲激光作为光源聚焦于铝合金表面产生激光诱导等离子体,使用三光栅光谱仪和门宽控制的ICCD检测光谱信号。实验分析了实验参数对Al Ⅰ 394.40 nm和Al Ⅰ 396.15 nm两条特征谱线强度和信背比的影响。研究表明,ICCD探测延时、ICCD门宽和激光脉冲能量对光谱信号和信背比有较大的影响,其中ICCD门宽变化会引起光谱信号信背比起伏变化。通过优化这些实验参数,确定了最佳实验条件,在低激光脉冲能量下获得了高光谱强度和信背比的信号,为定性和定量分析铝合金成分提供了有利条件。  相似文献   

13.
本文采用波长为532 nm的Nd:YAG单脉冲纳秒激光器诱导激发土壤(样品土壤来自蚌埠学院校园),并分析测量了土壤中铜元素的激光诱导击穿光谱特性.以铜元素的特征谱线Cu(393.3 nm)作为分析线,优化了实验参数增强型光电耦合器件(ICCD)门宽,ICCD门延迟对等离子体信号的影响,并在优化后的实验条件下测量分析了土壤中的金属元素种类.实验结果表明优化后的实验参数:ICCD门宽500ns,ICCD门延迟500 ns;在该优化条件下检测到样品土壤中含有金属元素:Fe, Cr, Ca, Mg, Cu, Al, Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号