首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   81篇
  国内免费   1699篇
化学   2576篇
晶体学   37篇
力学   2篇
综合类   19篇
物理学   136篇
  2024年   8篇
  2023年   32篇
  2022年   27篇
  2021年   57篇
  2020年   45篇
  2019年   43篇
  2018年   51篇
  2017年   52篇
  2016年   67篇
  2015年   67篇
  2014年   63篇
  2013年   101篇
  2012年   97篇
  2011年   88篇
  2010年   89篇
  2009年   107篇
  2008年   113篇
  2007年   96篇
  2006年   114篇
  2005年   101篇
  2004年   120篇
  2003年   124篇
  2002年   109篇
  2001年   124篇
  2000年   111篇
  1999年   108篇
  1998年   123篇
  1997年   81篇
  1996年   69篇
  1995年   82篇
  1994年   64篇
  1993年   44篇
  1992年   58篇
  1991年   38篇
  1990年   42篇
  1989年   27篇
  1988年   14篇
  1987年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1959年   1篇
排序方式: 共有2770条查询结果,搜索用时 31 毫秒
101.
生物质等绿色资源的高效转化利用是催化科学的重要发展方向.锡硅分子筛因具有优良的催化性能而得到相关研究者的普遍关注.准确构建催化剂活性中心结构/酸性与催化反应性能之间的构效关系是新型高效催化剂设计与研发的基础.固体核磁共振(NMR)是研究分子筛活性中心局域结构、酸特性与催化反应机理的重要手段.本文简述了近年来固体NMR技术在锡硅分子筛研究领域的一系列主要进展,并进行了展望.  相似文献   
102.
以廉价水玻璃为硅源,在晶种替代有机模板剂的条件下采用干胶法合成了ZSM-5分子筛。利用XRD、SEM、TEM、FTIR、N2吸附-脱附和NH3-TPD等分析方法对合成样品进行了表征和测试,考察了合成条件对ZSM-5分子筛晶化过程的影响。结果表明,在硅铝比(n/n)为30~70,钠硅比(n/n)为0.12~0.20时都可以得到结晶度良好的ZSM-5分子筛。研究发现,干胶法合成ZSM-5,在不引入外加水的情况下也可以得到ZSM-5样品,外加水的引入能够有效地提高晶化速率;与水热法合成ZSM-5分子筛相比,干胶法可以显著地缩短晶化时间,同时,合成样品的晶体尺寸也有所减小。  相似文献   
103.
含氟体系中,在负载晶种的大孔莫来石支撑体表面快速合成了高性能且取向生长的T型分子筛膜。采用XRD、SEM和MASNMR等手段对分子筛膜层和粉末进行表征。讨论了添加物、氟硅比、合成温度和合成时间等条件对膜生长与分离性能的影响,并阐述了含氟体系中T型分子筛膜快速晶化的机理。碱金属氟盐的加入促进了T型分子筛晶体层的晶化速率,并对晶体层形貌产生了一定的影响。膜应用于75℃、水/异丙醇(10:90,w/w)体系的平均渗透通量和分离因子分别为(4.91±0.18)kg·m-2·h-1和7060±1130。  相似文献   
104.
钛硅(TS-1)分子筛的微孔孔道严重限制了其在复杂分子催化转化中的应用,为了克服这一问题,通过酸洗脱、碱刻蚀及二者相结合的方法制备了多级孔 TS-1 分子筛,并采用等体积共浸渍法制备了相应的 NiMo 负载型催化剂;使用 X 射线衍射(XRD)、N2吸附-脱附、吡啶吸附红外光谱(Py-FTIR)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和高分辨透射电子显微镜(HR-TEM)等方法对多级孔TS-1分子筛的理化性质进行了表征;以二苯并噻吩(DBT)为探针对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,和常规TS-1分子筛相比,多级孔TS-1分子筛保持了MFI拓扑结构,比表面积增大且具有介孔结构,分子筛表面形成了适量的Brønsted酸中心;相应催化剂上活性金属与载体间相互作用得以改善,MoS2片晶长度和堆垛层数适宜,形成了更多的 NiMoS活性相;催化剂活性和选择性均有所提升,尤其是酸洗脱获得的 NiMo/AT-TS-1催化剂的活性相较未经处理的NiMo/TS-1催化剂提升了1.2倍,直接脱硫(DDS)路径选择性提升了22%。  相似文献   
105.
利用水热合成法,以三乙烯四胺(TETA)为模板剂,正硅酸乙酯、磷酸、氢氧化铝及乙酸钴为原料,合成了CoSAPO-34分子筛。通过扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、热重(TG)、N2吸附-脱附和紫外-可见漫反射光谱(UV-Vis DRS)等方法对合成的分子筛进行表征。以吡啶-正辛烷体系为模拟油品对分子筛催化剂的脱氮效果进行评价,考察了样品的用量、光催化时间及循环催化次数对其脱氮性能的影响。结果表明:当合成原料的物质的量之比为nP2O5nAL2O3nSiO2nConTETA=1:0.26:0.82:0.81:2.05,在200 ℃晶化24 h,合成得到粒径约为50 μm、仍保持了SAPO-34分子筛的骨架结构、形貌为立方体的CoSAPO-34分子筛,而且该分子筛具有较好的热稳定性。在500 W氙灯光照条件下反应150 min,样品对质量分数为100 μg·g-1模拟油品的脱除率达到70%,循环3次光催化脱氮活性基本保持不变。  相似文献   
106.
以甲苯为溶剂,正辛基三乙氧基硅烷(OTS)为改性剂,进行了ZSM-5高硅分子筛疏水改性研究。通过傅立叶红外(FT-IR)、X射线粉末衍射(XRD)、N2吸附-解吸附、静态水接触角、水与正己烷的静态吸附,以及水热稳定性试验等测试了改性前后样品结构与性能。结果表明,通过硅烷化改性在ZSM-5上接枝了-Si(CH2)7CH3基团,并实现了超疏水性。当0.8g ZSM-5使用0.24g改性剂时,改性后分子筛的接触角达152°,水吸附量下降了1.49%,比表面积、孔容、孔径分别减小了62.7m2/g、0.0329cm3/g、0.42nm,孔道长程有序性有所降低,且具有较高的水热稳定性。  相似文献   
107.
以自制不对称双子季铵盐表面活性剂为模板, 在水热合成体系中控制合成系列硅铝比纳米薄层ZSM-5分子筛.采用X射线衍射(XRD)、N2吸附-脱附、X射线荧光光谱(XRF)、扫描电镜(SEM)和27Al魔角旋转核磁共振(27Al MAS-NMR)对合成的样品进行了表征. 详细研究了晶化温度、晶化时间、结构导向剂(SDA)用量、碱度等对合成的影响和纳米薄层ZSM-5分子筛的形成过程. 结果表明: 分子筛硅铝比越高, 结构导向剂用量越大, 所需的晶化时间越短; 晶化温度越高, 晶化时间越短; 且不同硅铝比纳米薄层ZSM-5分子筛的形貌规整度、比表面积和介孔/微孔孔容比例随着硅铝比而变化.  相似文献   
108.
唐志诚 《分子催化》2013,27(3):227-234
以硫酸铝、水玻璃、正丁胺、水、晶种、NaCl、浓硫酸等低成本试剂为原料,一步直接合成法制备了高结晶度小晶粒ZSM-5分子筛,详细考察了凝胶陈化方式、滴加顺序、晶化时间、晶化温度、水量及原料硅铝比对分子筛结晶度及粒度的影响.通过XRD、SEM等对合成的分子筛进行了详细表征.研究结果表明:采用低温水浴回流搅拌陈化方式、在160~170℃、晶化30 h可获得高结晶度小晶粒ZSM-5分子筛.正反加顺序对分子筛结晶度影响不大.  相似文献   
109.
采用水热合成法,以三乙烯四胺(TETA)为模板剂,合成CuSAPO-5分子筛。通过扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、热重(TG)、N2吸附及元素分析等手段对分子筛样品进行表征,考察了不同硅铝比对合成分子筛晶体的影响,并测定了分子筛样品对甲苯的吸附性能。结果表明,将合成液的pH值调节为4.8~5.0,于150~170℃晶化1 d,可合成晶体形貌为球体的CuSAPO-5分子筛,粒径约为30 μm。分子筛样品具有较好的热稳定性,仍保持了SAPO-5分子筛的AFI骨架结构,属于微孔分子筛,孔径约为0.70nm,比表面积约为265 m2·g-1。元素分析结果表明分子筛中P、Si、Al和Cu的含量分别为12.56%、4.48%、7.17%和6.25%。样品对甲苯的吸附约在120 min时达到饱和,吸附量约为180 mg·g-1。  相似文献   
110.
在分子筛的合成中,通过使用四咪唑基取代的硼类化合物(四咪唑硼钠)作为模板剂,在溶剂热条件下,成功得到了磷酸铝盐分子筛AlPO4-11的大单晶。电喷雾质谱、19F和11B NMR等研究结果表明,在溶剂热条件下四咪唑硼钠起到了缓释剂的作用,其自身经历缓慢分解,持续释放低浓度咪唑分子的过程。由其释放出来的咪唑分子起到事实上的模板作用。因其浓度较低,限制了分子筛结晶过程中晶核形成的数量,从而易于导向分子筛大单晶的生成。通过引入不同种类的四取代硼类化合物作为模板剂,这种分子筛大单晶的合成策略可潜在应用于其它分子筛材料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号