首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用原位FT IR法比较了Cu ZrO2 和ZrO2 催化剂表面对CO及CO H2 的吸附行为。结果表明 ,CO在 5 0℃便可以在Cu ZrO2 表面形成b HCOO Zr、Zr COO- 和b HOCOOZr物种 ,吸附温度升高 ,b HOCOOZr逐渐分解生成Zr OH和CO2 ,而b HCOO Zr吸附物种逐渐增强。b HCOO Zr物种在Cu ZrO2 催化剂表面生成速率远远大于ZrO2 催化剂。在Cu ZrO2 催化剂表面 ,所形成的合成甲醇中间物种 (HCOO Zr和CH3O Zr)均和ZrO2 有关 ,意味着CO加氢反应主要在ZrO2 表面进行 ,铜组分主要向ZrO2 提供吸附CO及H2 物种。  相似文献   

2.
利用FTIR,TPSR和微量反应技术考察了CO和CO/H2在无定形、四方相和单斜相3种形态氧化锆为载体的钴基催化剂上的吸附和反应行为.结果表明,CO在以不同形态氧化锆为载体的催化剂上的吸附形式和转化行为具有较大差异.在单斜氧化锆为载体的催化剂上生成桥式和多桥式吸附的CO,并容易进一步加氢生成烃类物种,具有较高的反应活性和C5+烃的选择性.而以四方氧化锆为载体的催化剂上桥式吸附的CO较稳定,加氢反应活性较低.  相似文献   

3.
CO/H2在Cu/ZrO2催化剂表面吸附行为原位红外表征   总被引:3,自引:1,他引:2  
用原位FT-IR法比较了Cu/ZrO2和ZrO2催化剂表面对CO及CO/H2的吸附行为。结果表明,CO在50℃便可以在Cu/ZrO2表面形成b-HCOO-Zr、Zr-COO^-和b-HOCOOZr物种,吸附温度升高,b-HOCOOZr逐渐分解生成Zr-OH和CO2,而b-HCOO-Zr吸附物种逐渐增强。b-HCOO-Zr物种在Cu/ZrO2催化剂表面生成速度远远大于ZrO2催化剂。在Cu/ZrO2催化剂表面,所形成的合成甲醇中间物种(HCOO-Zr和CH3O-Zr)均和ZrO2有关,意味着CO加氢反应主要在ZrO2表面进行,铜组分主要向ZrO2提供吸附CO及H2物种。  相似文献   

4.
徐柏庆  陈兰忠 《分子催化》1992,6(6):454-461
用TPD和IR谱研究了CH_3NO_2在ZrO_2催化剂上的吸附活化和分解反应。结果表明,室温下CH_3NO_2在ZrO_2表面发生不可逆化学吸附,它们在TPD过程中可完全分解生成HCN、CO_2、CO、NH_3、H_2O和微量NO。其中H_2O和NO的脱附峰出现在383K附近。其它产物在543K附近出现极大值。IR结果表明,CH_3NO_2在ZrO_2上吸附形成诸如[CH_2NO_2],和/或吸附物种。这些吸附物种在升高温度时转化为表面态“HCN”。“HCN”或脱附,或进一步向表面“HCONH_2”和/或“HCOO~-”转化,后两种表面物种分解可产生CO_2、NH_3和CO。将这些结果与CH_3NO_2在SiO_2-Al_O_3和MgO催化剂上的结果进行了比较,讨论了酸-碱双功能性ZrO_2催化剂上CH_3NO_2活化分解的特点。  相似文献   

5.
用原位红外光谱法研究了氧化铝载镍催化剂在CO加氢反应条件下的表面吸附态的特征,观察到在H_2气氛中或是在CO H_2气氛中,线式和桥式CO吸附态具有大致相同的转化能力。它们都可能是生成甲烷的过渡态,但不太可能是直接形成甲烷的活性物种。用溢流和逆溢流的观点,讨论了反应过程中在Ni/Al_2O_3表面上形成的甲酸根离子的行为。红外光谱结果说明,甲酸根离子不可能是甲烷化反应的活性物种。  相似文献   

6.
采用高压原位FT-IR技术,对比研究了CO加H~2反应条件下Rh/SiO~2和Rh/NaY催化剂表面反应中间物种。在Rh/SiO~2表面上,无论在常压还是在1.0MPa合成气中,只观察到线式和桥式吸附CO。而在常压合成气中,Rh/NaY上不仅存在上述CO吸附物种,而且还有孪生型的Rh(Ⅰ)(CO)~2和少量Rh~6(CO)~1~6;当合成气压力升至1.0MPa后,Rh(Ⅰ)(CO)~2迅速转化成Rh~6(CO)~1~6和在2042cm^-^1产生吸收的单核羰基Rh物种,与此同时催化剂表面还生成了单齿和双齿乙酸根物种;这些在高压下生成的物种在合成气压力重新降回到常压时依然稳定存在。研究Rh/NaY上合成气反应表面物种与H~2的反应行为表明单齿乙酸根很可能是反应的活性中间物。这些结果说明Rh/NaY催化剂在高压合成气中的重构是诱发选择生成乙酸反应的基础。  相似文献   

7.
徐荫晟  朱天蔚 《催化学报》1984,5(2):195-199
分子轨道理论在催化中的应用愈来愈受到重视.对在金属原子簇上分子的吸附进行过不少半经验的量化计算,但对在担体催化剂上反应气体的吸附及所进行的反应用量子化学处理尚不多见.本文通过在Pt/SiO_2,Ru/SiO_2上CO的吸附、H和CO的共吸附以及中间生成物—CH_2,—CH_3,—CH_2—CH_3在催化剂表面健合的EHMO计算,结合现在流行的CO+H_2生成烷烃的机理,对Ru/SiO_2上生成CH_4的活性高于Pt/SiO_2,Pt/  相似文献   

8.
用质谱检测的程序升温脱附研究了~(13)CH_3OH在不同La_2O_3含量的Pd-La_2O_3/SiO_2催化剂上的脱附和分解。高温He处理的催化剂室温下对甲醇的吸附容量随La_2O_3含量增加而增加,但其脱附和分解产物之比几乎为常数。氢还原的催化剂室温下对甲醇吸附容量在Pd/La体相原子比为1:1时达最大值,但甲醇脱附和分解产物之比值随La_2O_3含量增加而增加,且产物中CO_2随La_2O_3含量增加而减少。CH_3OH和~(13)CH_3OH次序吸附后的TPD谱表明在催化剂上有对甲醇的分子吸附中心,可置换的解离吸附中心和不可置换的强解离吸附中心。CO和~(13)CH_3OH共吸附的TPD谱表明:在CO和~(13)CH_3OH共吸附物类之间有相互排斥的作用。这种作用有利于CO吸附态的重新分布和脱附,因此阻止了CO的岐化反应。  相似文献   

9.
Ni(OCH3)2/SiO2催化剂的制备及其合成碳酸二甲酯的反应性能   总被引:4,自引:0,他引:4  
采用表面改性和离子交换相结合的方法,制备了负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2催化剂。利用IR、TPD、TPSR和微反技术,考察了催化剂的表面结构以及CO2、CH3OH在催化剂表面上的化学吸附和反应性能。结果表明,负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2中,Ni^2 与载体SiO2表面的O^2-以双齿形式配位;在催化剂表面存在CO2的桥式吸附态和甲氧碳酸酯基物种两种吸附态,CH3OH则只有一种分子吸附态。在373-473K条件下,CO2和CH3OH在催化剂上的反应物主要是DMC、H2O以及少量的CO、CH4和CH2O,催化剂的活性由表面甲氧碳酸酯基物种与分子吸附态甲醇的反应决定的。讨论了催化剂上CO2和CH3OH的活化过程及吸附态的形成机理。  相似文献   

10.
进行了在SiO_2担载的Ru-Co双金属原子簇催化剂上合成气(CO+H_2)反应和模型化合物吸附的红外、质谱研究. 结果表明, 在原子簇制备的Ru-Co/SiO_2催化剂上, 在453 K下合成气(CO+H_2)反应在红外谱图产生了1584 cm~(-1)谱带, 它与CO加氢反应中含氧化台物的生成速率成线性关系. 因此提出了此谱峰对应着在CO加氢反应中生成古氧化合物的一个十分重要的中间体. 以CO+D_2、~(13)CO+H_2和~(13)CO+D_2代替CO+H_2, 在Ru-Co/SiO_2催化剂中, 1584 cm~(-1)谱带分别位移至1575、1542和1539 cm~(-1)处. 还观察到, 1584 cm~(-1)物种与H_2反应, 产物给出了CH_4和CH_3OH; 如果1584 cm~(-1)物种和D_2反应则生成CHD_3和CHD_2OD. 这些结果提出了1584 cm~(-1)谱带归属于表面甲酰基的羰基振动, 这同Ru-Co/SiO_2催化剂吸附甲醛的结果基本一致.  相似文献   

11.
 用红外光谱法考察了Rh-Mn-Li-Ti/SiO2催化剂在CO加氢反应过程中表面吸附物种随压力、温度和H2/CO比的改变而变化的规律. 结果表明,高压有利于提高催化剂表面吸附的CO浓度和活性,高温有利于CO解离; 而高温、高压条件不但促进了CO吸附,而且提高并平衡了CO的解离和插入之间的相对活性,促进了C2含氧化合物的生成. H2/CO比的增大有利于CO在催化剂表面的吸附,从而促进了CO插入,尤其是CO的解离和加氢活性,但是过高的H2/CO比将导致过高的CO解离和加氢活性,引起CO插入活性的削弱而最终导致C2含氧化合物生成活性的下降. 同时,考察了助剂(Mn, Li和Ti)对Rh基催化剂表面吸附物种的影响. 结果表明,助剂的加入可提高C2含氧化合物的生成活性.  相似文献   

12.
Ti2(OMe)4/SiO2催化剂的制备及其合成碳酸二甲酯的反应性能   总被引:4,自引:2,他引:4  
采用表面改性和离子交换法制备了SiO2负载的Ti2(OMe)4双核桥联配合物催化剂,用IR、TPD和微反技术考察了催化剂的表面构造及CO2和CH3OH在催化剂表面上的化学吸附和反应性能。结果表明:双核桥联配合物Ti2(OMe)4以Ti-O-Si键锚定在SiO2表面上;CO2在催化剂表面存在桥式和甲氧碳酸酯基两种吸附态,其中甲氧碳酸酯基吸附态是生成DMC的关键物种;CH3OH在催化剂上只有一种分子吸附态。在150℃以下,CO2和CH3OH在Ti2(OMe)4/SiO2催化剂表面上高选择地生成碳酸二甲酯。  相似文献   

13.
利用连续流动微反研究了Rh+Co/Al_2O_3催化剂的CO加氢反应.结果表明反应在220℃以上发生.反应活性随温度的升高和H_2/CO值的增加而增加.利用TP-IR动态方法研究了Rh+Co/Al_2_3上CO和H_2共吸附及其动态行为.结果表明在Rh+Co/Al_2O_3的孪生及线式中心上,CO和H_2室温共吸附时即有部分孪生及线式CO转化为相应的羰基氢化物.随温度的升高,剩余的孪生和线式CO继续向相应的羰基氢化物转化.而羰基氢化物则向多氢羰基氢化物转化.在到达反应温度之前,催化剂表面只存在羰基氢化物及相应的多氢羰基氢化物.在反应温度则导致产物CH_4生成.与CO加氢反应和CO歧化的吸附态研究结果相关联,作者认为在Rh+Co/Al_2O3上CO加氢生成CH_4是经由羰基氢化物-多氢羰基氢化物途径.  相似文献   

14.
通过原位红外漫反射实验比较研究了甲醇在Cu及ZrO2/Cu催化剂表面的吸附与反应,并且采用不同还原温度来处理催化剂,改变催化剂表面的氧含量,并进一步研究甲醇吸附和反应性能随着催化剂表面氧含量的变化规律.结果表明,甲醇在Cu催化剂表面反应生成吸附态甲醛物种,进一步生成CO2,而在ZrO2/Cu表面形成甲酸盐物种,并与表面氧进一步反应生成CO2.随着催化剂还原温度的升高,反应中间物进一步生成CO2的反应速率变慢,说明催化剂表面的氧物种含量决定着催化剂甲醇吸附中间物种的形成及反应速率.  相似文献   

15.
采用高压原位FT -IR技术 ,对比研究了CO加H2 反应条件下Rh/SiO2 和Rh/NaY催化剂表面反应中间物种 .在Rh/SiO2 表面上 ,无论在常压还是在 1.0MPa合成气中 ,只观察到线式和桥式吸附CO .而在常压合成气中 ,Rh/NaY上不仅存在上述CO吸附物种 ,而且还有孪生型的Rh(I) (CO) 2 和少量Rh6 (CO) 16 ;当合成气压力升至 1.0MPa后 ,Rh(I) (CO) 2 迅速转化成Rh6 (CO) 16 和在 2 0 42cm-1产生吸收的单核羰基Rh物种 ,与此同时催化剂表面还生成了单齿和双齿乙酸根物种 ;这些在高压下生成的物种在合成气压力重新降回到常压时依然稳定存在 .研究Rh/NaY上合成气反应表面物种与H2 的反应行为表明单齿乙酸根很可能是反应的活性中间物 .这些结果说明Rh/NaY催化剂在高压合成气中的重构是诱发选择生成乙酸反应的基础  相似文献   

16.
铈助剂对Co/SiO2催化剂费托合成反应性能的影响   总被引:4,自引:0,他引:4  
 考察了铈助剂对钴基催化剂上费托合成反应性能的影响,并进行了TPR和XRD等表征及瞬变应答研究.结果表明,加入铈助剂后,催化剂的活性和C5+烃类的选择性有显著提高,且C5+烃类分布有明显改变,有利于中间馏分油的生成.CODEX软件优化表明,当n(Ce)/n(Co)=0.2~0.3,w(Co)=10%,焙烧温度为740K时,在GHSV=500h-1,p=1.2MPa,T=483K的反应条件下,C5+烃类收率可达83%左右.根据实验结果,可以推测在钴基催化剂表面存在弱、中、强三种化学吸附的CO物种;-CH2-基团可能通过强度适中的化学吸附CO直接加氢生成;强化学吸附的CO是指离解吸附的CO,可发生歧化反应生成CO2和积炭,并覆盖部分活性位;加入铈助剂能抑制强化学吸附的CO生成,从而显著地提高了催化剂的活性.  相似文献   

17.
三种Au(111)催化水煤气变换反应机理的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论对三种水煤气变换反应(WGSR)机理(氧化还原机理、羧基机理、甲酸基的生成机理)在Au(111)面上的反应历程进行详细讨论.通过对表面吸附物种(H2O、CO、OH、O、H、CO2、COOH、HCOO)的吸附行为进行研究,得到最佳活性吸附中心.对三种机理中的14个基元反应的活化能进行分析,得出WGSR在Au(111)上按照羧基机理和氧化还原机理进行的可能性较大,按照甲酸基的生成机理进行的可能性较小.相比较羧基机理和氧化还原机理,反应更有可能按照羧基机理进行,最佳反应途径为H2O-H→OH+CO→COOH+OH→CO2.  相似文献   

18.
采用CO碳化SiO2和Al3O4负载的Co(NO3)2的方法制备了SiO2和Al3O4负载的Co2C催化剂,采用N2物理吸附、X射线衍射和H2-程序升温还原技术对催化剂进行了表征,并用于催化费托合成反应中.结果显示,需要较长碳化时间才可合成负载的Co2C催化剂;所制催化剂表现出CO加氢生成高碳醇的催化性能,其原因可能在于催化剂表面存在的金属Co物种使CO解离,表面Co物种有利于CO插入,从而导致醇的生成,但体相Co2C则不具有催化活性.  相似文献   

19.
将温室气体CO_2催化加氢转化为CH_4,有利于碳资源化利用和减轻环境污染,是具有一定现实意义的模型化反应.实验发现,氧化物负载型催化剂对CO_2甲烷化过程展现出较高的催化活性和稳定性,但其催化机理和界面作用机制并未得到清楚认识.基于DFT+U计算方法,本文系统研究了复合氧化物Ce_(0.75)Zr_(0.25)O_2负载Ni体系催化CO_2甲烷化复杂基元过程.结果表明,在Ni/Ce_(0.75)Zr_(0.25)O_2(110)体系中,CO_2甲烷化反应涉及CO_2分解和甲酸盐两条途径,且CO_2的分解途径占主导地位,整个反应的控制步骤为CO_2吸附过程.产物甲烷是由界面上CO_2解离加氢产生的CH基团进一步在金属Ni活性位上加氢生成,揭示了该催化体系中载体与负载物之间存在协同催化作用,即载体界面主要发生碳氧化物的脱氧加氢,碳氢中间物种的加氢反应在Ni上发生.  相似文献   

20.
大气中CO_2浓度增加导致的温室效应以及化石燃料的匮乏正日益受到世界范围的关注.由于CO_2较强的惰性以及较高C–C偶联能垒,迄今为止大部分研究都集中在CO_2催化加氢制备各种C1化学品(如CH_4,CH3OH,CO等),鲜有研究关注合成液态燃料(C_(5+)碳氢化合物).目前,CO_2加氢直接合成烃类主要通过CO_2基费托合成反应(CO_2-FTS)实现,即先通过逆水煤气变换反应(RWGS)将CO_2还原成CO,随后CO通过传统费托反应(FTS)加氢生成烃类化合物.在两种工业化FTS催化剂(Fe和Co基催化剂)中,钴基催化剂具有更高的反应活性和链增长能力,以及较高的机械强度和稳定性.然而,由于CO_2的惰性,造成催化剂表面物种的加氢程度更高,使得甲烷更容易生成.因而,高反应活性、高选择性催化剂的开发是实现该过程的关键.本文采用沉积沉淀法制备了一系列双金属CoCu/TiO_2催化剂,再通过初湿浸渍法对其进行碱金属助剂(Li,Na,K,Rb和Cs)改性,并用多种表征手段系统研究了碱金属助剂对催化剂物化性质及其催化CO_2加氢制备长链烃反应的影响.结果表明,碱金属的加入对催化剂织构性质影响不大,它们在催化剂表面发生富集,且富集程度随碱金属原子序数的增加而降低.另外,碱金属的加入增强了CO_2的吸附,其中,Na改性的CoCu/TiO_2催化剂的碱性最强;同时还降低了H_2的脱附量,尤以K,Rb和Cs改性的催化剂为甚.在250 ℃,5 MPa,空速3000 mL·g_(cat)~(–1)·h~(–1)和H_2/CO_2=3的反应条件下,对不同碱金属助剂改性的催化剂进行评价.结果表明,不加助剂的CoCu/TiO_2催化剂上CO_2转化率高达23.1%,但产物主要是CH_4,此时CO_2在Co活性中心上直接发生甲烷化反应;碱金属助剂的引入显著抑制了CH_4的生成,提高了长链烃的选择性,但同时也降低了CO_2转化率,并且随着碱金属原子序数增大呈现先下降后上升的趋势,表明合适的碱性强度可以更好地改性催化剂性能.其中,Na助剂改性的CoCu/TiO_2催化剂的碱性最强,且H_2的脱附量降低幅度较小,因此,该催化剂具有最高的C_(5+)烃类收率,达到5.4%;同时CO_2转化率为18.4%,烃类产物中C_(5+)烃类选择性为42.1%.Na助剂改性的CoCu/TiO_2催化剂还展现了良好的催化稳定性,反应200 h后,CO_2转化率和C_(5+)选择性分别保持18%和40%.基于碱金属助剂对催化剂物化性质与反应性能的调变规律,可进一步指导CO_2加氢直接合成长链碳催化剂的设计与合成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号