首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
CO/H2在Cu/ZrO2催化剂表面吸附行为原位红外表征   总被引:3,自引:1,他引:2  
用原位FT-IR法比较了Cu/ZrO2和ZrO2催化剂表面对CO及CO/H2的吸附行为。结果表明,CO在50℃便可以在Cu/ZrO2表面形成b-HCOO-Zr、Zr-COO^-和b-HOCOOZr物种,吸附温度升高,b-HOCOOZr逐渐分解生成Zr-OH和CO2,而b-HCOO-Zr吸附物种逐渐增强。b-HCOO-Zr物种在Cu/ZrO2催化剂表面生成速度远远大于ZrO2催化剂。在Cu/ZrO2催化剂表面,所形成的合成甲醇中间物种(HCOO-Zr和CH3O-Zr)均和ZrO2有关,意味着CO加氢反应主要在ZrO2表面进行,铜组分主要向ZrO2提供吸附CO及H2物种。  相似文献   

2.
用原位FT IR法比较了Cu ZrO2 和ZrO2 催化剂表面对CO及CO H2 的吸附行为。结果表明 ,CO在 5 0℃便可以在Cu ZrO2 表面形成b HCOO Zr、Zr COO- 和b HOCOOZr物种 ,吸附温度升高 ,b HOCOOZr逐渐分解生成Zr OH和CO2 ,而b HCOO Zr吸附物种逐渐增强。b HCOO Zr物种在Cu ZrO2 催化剂表面生成速率远远大于ZrO2 催化剂。在Cu ZrO2 催化剂表面 ,所形成的合成甲醇中间物种 (HCOO Zr和CH3O Zr)均和ZrO2 有关 ,意味着CO加氢反应主要在ZrO2 表面进行 ,铜组分主要向ZrO2 提供吸附CO及H2 物种。  相似文献   

3.
通过热分解法制备Cu模型催化剂,然后经浸渍制备ZrO2/Cu催化剂,采用SEM、XPS考察了催化剂表面形态和组成,并采用in-situ Raman考察了催化剂在还原和吸附CO和水的过程中随时间的变化。结果表明,还原前Cu催化剂表面主要存在CuO物种,而在ZrO2/Cu表面,除了CuO物种,还存在着大量的表面羟基物种。ZrO2/Cu相对Cu更加容易还原为Cu0,同时,ZrO2在催化剂表面聚集形成絮状态,而Cu催化剂还原后主要形成Cu2O物种。Cu催化剂表面吸附CO后,除了形成Cu-CO外,Cu2O物种均会迅速消失形成CO2。Cu催化剂对水的作用比较弱,但是ZrO2/Cu催化剂和水作用较强,并且通过Cu-OH中间物形成Cu2O物种。  相似文献   

4.
研究了Cu和ZrO2/Cu模型催化剂的甲醇水蒸气重整制氢的反应性能, 结果表明, 纯铜催化剂的反应初始活性随着还原温度的增加而显著降低, 并且在失活后的催化剂反应体系中通入少量的氧, 可恢复催化剂的活性. 相对于Cu, ZrO2/Cu催化剂的活性和稳定性显著增加. 催化剂的TPR, XPS以及原位FT-IR表征结果表明, 导致催化剂活性迅速降低的原因为催化剂表面氧物种的逐渐消耗. ZrO2在反应过程中可以稳定铜表面氧以及Cu物种, 从而显著提高了反应活性和稳定性.  相似文献   

5.
近年来,由于大气CO2浓度增加引起的温室效应正日益威胁着人类的生存与发展,CO2的捕获与利用是有望解决温室效应和能源危机的有效途径.CO2催化转化为甲醇成为众多研究者关注的焦点,这是因为甲醇不仅是一种重要的基本化工原料,也是一种洁净的绿色燃料和能源载体.Cu基催化剂广泛应用于CO2加氢合成甲醇反应,并表现出良好的催化性能.通常,金属催化剂的制备是采用H2对金属氧化物进行还原.然而,传统的气相还原过程伴随着强烈的热效应,且需要在高温(473-573 K)下进行,会引起表面铜颗粒长大并加速其聚集烧结,使得活性组分利用率下降.近年来,以NaBH4为还原剂的液相还原法逐渐受到人们的重视,该方法操作简单、快捷且条件可控,反应在低温下进行,放出的热量可在液相环境中迅速得到转移,大大抑制了铜颗粒的聚集.因此,液相还原法可制备出高铜分散度、高活性的催化剂.焙烧温度对铜基催化剂结构和催化性能的影响已得到广泛探究,但这仅限于含二价铜物种催化剂,焙烧温度对含多种铜价态催化剂的影响未见报道.由于液相还原法制备的催化剂含有还原态的铜物种(Cu0和Cu+),它们比Cu2+具有更强的流动性,因此在后续的焙烧过程中催化剂更容易发生烧结和聚集.本文采用液相还原法合成了Cu/Zn/Al/Zr催化剂,分别于423,573,723和873 K焙烧后用于CO2加氢合成甲醇反应,考察了焙烧温度对制备的铜基催化剂结构性质和催化性能的影响,并与传统共沉淀法制备的催化剂进行了对比.结果显示,随着焙烧温度升高,铜物种聚集作用增强,金属铜颗粒尺寸增大,873 K时烧结出现显著增强.由于比表面积随焙烧温度升高而减小,高温度焙烧的催化剂具有小的表面碱性位数目.焙烧温度会影响催化剂中铜物种与其它组分的相互作用,进而影响催化剂的还原.随着焙烧温度的升高,催化剂的还原温度逐渐降低,表面Cu+/Cu0的比例先增后减.CO2加氢活性评价显示,液相还原法制备的催化剂具有更高的催化活性,尤其是甲醇选择性;随着焙烧温度升高,催化剂的CO2转化率和甲醇选择性先增后减,CZAZ-573催化剂具有最高活性,且在1000 h长周期活性测试中表现稳定.CO2转化率与催化剂暴露金属铜的比表面积密切相关.相比Cu0,产物甲醇更容易在Cu+表面催化生成,催化剂表面的Cu+/Cu0比与甲醇选择性的变化规律一致.通过调控焙烧温度可得到高Cu比表面积以及高Cu+/Cu0比的催化剂,有利于CO2加氢生成甲醇.  相似文献   

6.
Ni/Al2O3催化剂表面状态对CH4氧化反应的影响   总被引:3,自引:1,他引:2  
采用瞬变响应技术研究了常压700℃条件下气相O2、Ni/Al2O3催化剂表面上可逆吸附氧物种及催化剂的表面状态对CH4吸附、反应以及CH4部分氧化反应的影响,同时也对CH4部分氧化制合成气反应过程中催化剂表面所处的状态进行了研究.结果表明,如果催化剂表面处于氧化态,CH4不能吸附分解,只能通过RidealEley机理与催化剂表面的吸附氧进行非选择性氧化反应,这将严重影响CH4的转化和目的产物H2、CO的选择性.只有在还原的催化剂上,CH4部分氧化制合成气反应才能高转化、高选择性地进行.在CH4部分氧化制合成气反应过程中,催化剂表面处于还原态,不存在多余的中间氧物种NiO,但存在少量的碳物种,这有利于保持催化剂的还原态和抑制CO2的生成.  相似文献   

7.
Fe助剂对Cu/ZrO2甲醇水蒸气重整制氢催化剂的影响   总被引:3,自引:2,他引:3  
利用XRD、TPR和EXAFS等手段,研究了Fe助剂对Cu/Fe2O3/ZrO3催化剂物化特性的影响,同时研究了对甲醇水蒸气重整反应活性和选择性的影响。结果表明,Fe对Cu/ZrO2催化剂结构有一定的修饰作用。添加Fe助剂后,铜的分散度提高,催化剂的起始还原温度提前,还原温度区间缩短;同时甲醇水蒸气重整制氢反应催化活性上升,氢选择性提高,产物中CO含量降低,但铁铜比应有一最佳值。  相似文献   

8.
采用表面改性和离子交换相结合的方法制备了负载型配合物Cu2(μ-OEt)2/SiO2催化剂,用化学分析、IR、TPD和超临界反应技术考察了催化剂的表面构造、CO2和甲醇在催化剂上的化学吸附及超临界条件下的反应性能,结果表明:双核配合物Cu2(μ-OEt)2中金属离子Cu^2 与载体SiO2表面O^2-以双齿配位键合,配体以桥基形式连接双金属离子形成双核物种Cu2(μ-OEt)2;CO2在催化剂表面存在桥式和乙氧碳酸酯基两种吸附态,其中乙氧碳酸酯基吸附态是生成DMC的关键物种;CH3OH在催化剂上只有一种分子吸附态.催化剂用量、反应压力、反应温度和反应时间对甲醇的转化率都有不同程度的影响,在超临界条件下,DMC的选择性为100%,甲醇的转化率超过4%.  相似文献   

9.
何代平  丁云杰 《催化学报》2005,26(11):961-964
 采用H2和CO吸附、FT-IR和TPR等表征手段对不同Pd含量的Pd-K/MnOx-ZrO2催化剂进行了研究,并考察了其对CO加氢制甲醇和异丁醇反应的催化性能. 结果表明, Pd的加入促进了锰的还原和氧空位的生成,有利于异丁醇的生成; Pd的加入改变了催化剂表面的吸附行为. Pd-K/MnOx-ZrO2催化剂表面有较高的H2和CO吸附量,有利于甲醇与异丁醇合成速率的提高. 当Pd的添加量超过1.5%时, Pd的分散度降低,粒径变大,致使甲醇与异丁醇的合成速率降低.  相似文献   

10.
Cu-Ni/Zn催化剂甲醇裂解机理原位XPS研究   总被引:6,自引:0,他引:6  
利用原位XPS 和TPD MS 技术研究了Cu Ni/Zn催化剂在甲醇裂解反应中的机理和活性中心.TPD MS脱附产物中仅检测到CH3OH、H2和CO,而未发现CH4和CH3OCH3、HCOOCH3等其它含氧物种,说明在CH3OH裂解过程中仅包括O-H、C-H键的断裂,而不存在C-O键的断裂过程.In situ XPS的研究发现,在反应温度升高到200 ℃以上时,Cu/Zn催化剂中的Zn明显被还原,反映出Cu/Zn催化剂失活过程的Cu Zn合金生成过程,而在Cu Ni/Zn催化剂中未观察到Zn的还原,且表面出现Cu+/Cu0共存的现象.Cu+和Cu0很可能共同构成催化剂表面的活性中心,Cu+应该是在甲醇裂解反应过程中形成的中间态.产物氢从Cu Ni/Zn 催化剂表面脱附为反应的控速步骤.  相似文献   

11.
应用漫反射红外和质谱在线技术对H2, H2O及甲醇在ZrO2及Cu/ZrO2上的程序升温脱附(TPD)及程序升温反应(TPSR)行为进行了研究. 结果表明, Cu/ZrO2催化剂中铜锆组分间表现出显著的氢和水组分“逆溢流”效应. 对Cu/ZrO2催化体系中ZrO2表面线式及桥式羟基物种浓度随还原预处理温度变化的进一步分析表明, 由于氢和水“逆溢流效应”的存在, 使得Cu/ZrO2在较低的还原温度下活化的同时, 在铜锆界面处形成较丰富的氧阴离子和氧空穴活性位, 而后者的形成与存在直接影响并决定了甲醇在Cu/ZrO2催化剂上的低温催化分解行为.  相似文献   

12.
近年来,催化CO2加氢合成甲醇被视为有望解决温室效应和燃料枯竭的有效途径。目前,铜基催化剂因具有较高的反应活性被广泛应用于工业生产。然而,竞争逆水煤气变换反应产生的CO导致甲醇选择性较低,同时副产物水引起Cu发生不可逆烧结,进而降低甲醇产率。众所周知,CO能够调整分子的表面竞争吸附和活性位的氧化还原行为,本工作拟向原料气中掺入具有还原性的CO以抑制逆水煤气变换反应和防止表面氧化中毒。另一方面,通常认为铜基催化的CO2加氢制甲醇是结构敏感性反应,不同的前驱体能够显著影响催化剂结构和形貌,进而影响催化活性。因此,我们首先通过共沉淀法和蒸氨法制备了含有类水滑石前驱体(CHT-CZA)和复合物前驱体(CNP-CZA)结构的Cu/ZnO/Al2O3催化剂。随后,为探究CO掺杂后反应机理,在250 ℃,5 MPa的反应条件下,含有不同比例CO的原料气中(CO2:CO:H2:N2 = x:(24.5 - x):72.5:3)评价两种催化剂对甲醇合成的性能。评价结果显示两种催化剂反应性能趋势相同,随着CO含量增加,CO2转化率和STYH2O不断降低,STYMeOH逐渐增加。X射线光谱(XPS)显示随CO含量增加,催化剂表面还原性Cu比例增加。评价和表征结果说明CO引入抑制了逆水煤气变换反应的发生,通过还原被H2O氧化的活性Cu表面,促使更多的活性Cu位点暴露参与甲醇合成。另一方面,透射电镜(TEM)显示掺杂的CO会过度还原而引起颗粒团聚,导致催化剂逐渐失活。相比之下,含有水滑石前驱体的催化剂在任何气氛下均表现出更加优越的反应性能和长周期稳定性。这可归因于类水滑石前驱体独特的片层结构通过结构限域作用有效避免了因CO过度还原而导致的金属颗粒团聚,从而减少活性位点损失。  相似文献   

13.
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

14.
ZrO2—SiO2负载Cu—Ni催化剂的CO2加氢反应性能   总被引:7,自引:0,他引:7  
采用表面反应改性法,制备了ZrO2-SiO2(ZrSiO)表面复合物载体,用等体积浸渍法制备了ZrSiO担载的Cu-Ni双金属催化剂,借助BET、TPR、IR和微反等技术,研究了ZrSiO及其负载的Ni、Cu双金属催化剂的表面构造,化学吸附及催化CO2加氢的反应性能,结果表明,ZrSiO表面主要是价联型结构,ZrO2引入SiO2表面,可以有效地促进CuO和NiO的还原,在ZrSiO负载的Cu-Ni催化剂表面的Cu或Ni位,CO2发生化学 吸附形成线、剪式、卧式吸附态,在该催化剂上CO2的加氢反应产物主要是CH3OH3、CH4、CO和H2O生成CH3OH的选择性与催化剂组成及反应条件密切相关,在适当的条件,CH3OH的选择性大于90%。  相似文献   

15.
CuZnOAl2O3催化剂用于合成甲醇的反应机理已经进行了大量的研究[1~3]。近年来,利用原位红外技术在研究合成甲醇的催化反应机理方面取得了不少研究成果[4~7]。但大多数实验是采用低铜含量催化剂[4,5]。本文采用高温加压式原位红外池,在513K和20MPa的条件下,...  相似文献   

16.
单斜及四方晶相ZrO2催化CO加氢反应性能的比较   总被引:7,自引:0,他引:7  
李文  殷元骐 《分子催化》1999,13(3):186-192
研究了以纯单斜(m)和四方(t)晶相ZrO2为催化剂的CO加氢反应.尽管两种晶相催化剂均有较高的低碳烯烃的选择性,但是也发现了两者催化性能的显著差别.m-ZrO2催化剂对异丁烯有突出的选择性,而t-ZrO2催化剂,则只有乙烯和丙烯,几乎没有C4烯烃的选择性.室温下CO吸附的原位IR谱测试可见,只有在t-ZrO2催化剂上观测到不可逆含氧吸附物种.吡啶吸附的Raman谱显示出它们之间表面性质的差别,m-ZrO2催化剂表面存在等强度的Lewis和Bronsted酸中心,而在t-ZrO2催化剂表面几乎只有Bronsted酸中心.催化过程的一些模型分子电子结构计算也表明了ZrO2催化剂对低碳烯烃选择性内在的电子结构条件.我们推测CO在m-ZrO2催化剂表面的孪式吸附物种可能是导致异丁烯产物的根源  相似文献   

17.
采用共沉淀法制备的Cu/Fe催化剂催化甲醇部分氧化制氢结果表明,Fe的引入,有利于降低CO选择性,Cu/Fe比对催化性能有明显影响,当Cu/Fe比为2:8时,甲醇转化率最高,与其它的Cu基催化剂相比,在较宽的Cu/Fe比范围内,CO的选择性均保持在较低的水平,利用XRD,XPS等方法,对Cu/Fe催化剂进行表征,结果表明,Fe的引入,有利于活性组分Cu在催化剂表面上的分散,在反应过程中Cu组分向表面富集,因而可使得催化剂表面的Cu物种不因Fe的引入而减少。  相似文献   

18.
采用四种不同沉淀剂并流共沉淀制备系列Cu/ZrO2催化剂, 结果表明经过Na2C2O4和NaOH改性沉淀的催化剂在甲醇部分氧化制氢反应中表现出比NaOH, Na2CO3和Na2C2O4-Na2CO3沉淀的催化剂更优越的催化性能, 在533 K可获得92%的氢气产率而CO含量低于1.5%, 并且在110 h寿命测试中保持良好的稳定性. 采用X射线粉末衍射, N2低温吸附, H2-TPR, N2O滴定和X射线光电子能谱对其进行系统表征, 阐述了该改性共沉淀法所得催化剂高性能的本质原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号