首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
景远聚  康淳  林延欣  高杰  王新波 《化学进展》2022,34(11):2373-2385
单原子催化剂具有高原子利用率、高催化活性和高选择性等优点,兼具了均相催化剂“独立活性位点”和非均相催化剂“易循环利用”的特点,有效解决贵金属昂贵稀少的缺陷。其中载体不仅能影响单原子的稳定性,还影响其电子结构,从而影响催化性能。作为一种新型二维无机材料,MXene具有比表面积大、带隙可调、导电性好和螯合位丰富等特点,是制备单原子催化剂的理想载体材料。本文简要总结了MXene的结构特点,综述了MXene基单原子催化剂的制备策略,并着重介绍了MXene基单原子催化剂在电化学能源转换领域的应用,包括析氢反应、氧电极反应、氮还原反应、二氧化碳还原反应,以及在电池储能方面的应用。最后,总结了当前MXene基单原子催化剂在研究和实用方面所面临的挑战与机遇。  相似文献   

2.
合成氨在地球氮循环中扮演着重要角色.工业上传统的合成氨方法采用高温高压的反应条件,对反应设备要求高,并且导致了巨大的能耗.因此,以电力为驱动的电催化合成过程作为一种新型的合成氨方法引起了广泛关注.选择和设计合适的催化剂以降低所需的过电势是该过程的一个重要研究课题.常用的电催化剂包括金属基、金属氧化物、聚合物及其他复合性催化剂.其中,单原子催化剂因其极高的原子利用率而广受关注,但必须选择合适的基底使其成为兼具高催化活性和高稳定性的催化剂.二维过渡金属碳/氮化物(MXene)作为一种新型二维材料,拥有和石墨烯类似的电导性质,并与金属有良好的相互作用,是一种富有希望的载体.本文采用密度泛函理论研究了氮气在一系列MXene负载的过渡金属单原子催化剂上的吸附和活化,通过吉布斯自由能计算研究了电催化合成氨的反应路径,给出了相应的过电势.同时,通过研究可能的决速步骤的吉布斯自由能,分析了吉布斯自由能和过电势之间的关系.计算结果表明,在所有的MXene负载的过渡金属单原子上,氮气更倾向于一端吸附.根据吉布斯自由能的定义,负值显示这些催化剂具有良好的氮气活化性能,特别是铁基催化剂(–0.75 eV),这就不难理解工业上广泛应用铁基催化剂.而负载不同的过渡金属对电催化合成氨的过电势具有一定影响.通过吉布斯自由能计算发现,该系列金属的过电势在0.68–2.33 eV, Mo/Ti3C2O2需要的外加电压最少.这对实验上催化剂的选择具有一定的指导意义.同时,我们发现电催化合成氨过程有两个可能的决速步骤:氮气加氢生成NNH和NH2生成氨气.通过比较这两个步骤的吉布斯自由能可快速得到催化剂的过电势.因此,我们可以得出结论,该系列MXene负载的过渡金属单原子催化剂能够有效地改变反应路径,免出现传统反应中氮氮键断裂的巨大能垒,从而有效降低了反应的过电势.这为实验上选择合适的催化剂提供了理论依据.并且,这种通过直接比较决速步骤的吉布斯自由能得到过电势的方法对电催化合成氨以及其他类似反应的催化剂筛选和理性设计具有指导意义.  相似文献   

3.
黄斌  吴亦凡  陈碧波  钱勇  周耐根  李能 《催化学报》2021,42(7):1160-1167,中插38-中插41
由于氨是药物、肥料和树脂等领域的基础,氨合成一直广受关注.工业中主要通过Haber-Bosch反应制备氨,反应需要在高温高压下进行.因此,探索其它氨合成技术对减轻能源消耗和缓解温室效应具有重大意义.在溶液条件下,采用水作为氢质子源,电化学还原氮合成氨方法受到了极大关注.然而,大多数电催化剂难以活化氮气分子且电催化氮气还原过程中存在副反应竞争,因此,研发高效的电催化材料仍然是一个重要研究领域.研究人员探索了多种电催化材料,其中,双原子对催化剂成为电催化领域的研究热点.与单原子催化剂相比,双原子对催化剂不仅具有低配位的金属原子,而且可以通过调节额外分散的金属原子来改善多数电催化反应性能.作为一种新型碳氮材料,二维g-CN具有高表面积、多孔结构以及出色的光学活性和热力学稳定性,可以与金属原子对良好地适配,是一种有潜力的基底材料.然而,目前有关金属双原子对负载在g-CN单层上作为电催化剂催化N2分子还原性能尚不清楚.本文采用密度泛函理论计算研究了N2分子在过渡金属原子对(TM=Sc~Zn)掺杂g-CN单层上的吸附和活化,根据吉布斯自由能详细地研究了电催化合成氨的电化学机理.计算发现,在Fe2@CN和Co2@CN催化剂上,其决速步骤的自由能变化分别为0.47和0.78 eV.对于Fe2@CN,N2电还原反应机制遵循末端路径,而在Co2@CN上,其还原过程为末端或混合路径.由于Co2@CN对析氢反应的抑制效果较好,因此该电催化材料体系极具竞争力.相比于Co2@CN,Fe2@CN具有较好的氮气活化性能,但选择性较差.另外,N2分子与Fe2@CN和Co2@CN之间存在电荷的接受-给予过程,这在活化惰性N2分子中氮原子间的三键上起到了关键作用.第一性原理分子动力学模拟结果表明,Fe2@CN和Co2@CN表现出较高的结构稳定性.因此,本文深入探讨了过渡金属原子对掺杂g-CN单层催化剂上的氮气还原效率及机制,为合理设计该系列的高效、低成本电催化剂提供理论依据.  相似文献   

4.
钯催化剂对碱性溶液的乙醇电催化氧化反应表现较好的催化活性. 本文通过简单的化学沉积法,将钯原子成功修饰到金纳米颗粒表面,制备的催化剂对乙醇电催化氧化反应表现出比钯更好的催化性能. 研究发现,钯原子不均匀地覆盖在金核表面,部分金原子暴露在外层. 制备的催化剂的峰电流密度是钯催化剂的4.6 倍,起始电势低100 mV. 该催化剂较好的催化性能可能归因于金核的电子效应和表面双功能电催化反应机制.  相似文献   

5.
由于良好的催化活性和稳定性,贵金属催化剂已经被广泛应用于各种异相催化反应中,但是贵金属的稀有性和高成本无法满足未来日益增长的催化需求.2011年,张涛课题组成功地制备了高效、稳定的铂单原子催化剂.高效的单原子催化剂利用单个活性位点作为催化活性中心,可能会成为连接同相催化和异相催化的桥梁.然而从经济适用的长远角度考虑,将非贵金属催化剂缩小到原子尺度是否也会展现出优良的催化活性;是否有潜力替代目前已被广泛应用的贵金属催化剂?虽然现阶段非贵金属催化剂的催化性能仍无法达到贵金属催化剂的标准,但是已有相关研究从理论和实验上报道了非贵金属单原子催化剂及其优异的性能表明了其在未来发展中极其重要,因而,可以预见这两个疑问的答案都是肯定的.单原子概念的出现不仅为提高贵金属的催化性能及成本的降低指明了方向,同时也为制备具有高催化活性、甚至可与贵金属催化剂相媲美的非贵金属催化剂提供了可能性.我们在上述背景下,阐述了对单原子的概念日益加深的机制认知,并从理论和实验上概述了非贵金属单原子催化剂近期的发展情况,指出了目前的在单原子催化剂领域需要解决的一些问题,最后,针对研究现状,我们对未来单原子的发展提出了相应的展望.单原子催化剂具有较高的表面能,因而,如何寻找合适的基体与单原子相互作用,进而,使基体材料像一只手一样稳固地"抓紧"单原子,因而,降低其高表面能则是发挥优良催化性能的基础.强金属–基体相互作用(SMSI)不仅可以将单原子限制在基体表面,亦会影响整个催化过程.目前应用于单原子催化剂的基体种类很多,如金属氧化物、金属以及其他材料,而对SMSI认知则主要分两大类,一类是源自于基体表面的结构缺陷,另一类是源于其电子缺陷.从目前的发展状况来看SMSI机制仍有很多疑惑尚未解决,例如对电子转移影响的认知等.理论研究表明,在某些反应中非贵金属单原子展示出可替代贵金属的催化性质.比如,在一氧化碳优先反应(PROX)中,单原子钴和钛展示出的催化性能可与贵金属相媲美;理论计算同样证明单原子镍在一氧化碳还原中的催化活性比单原子铱优秀,甚至与单原子铂类似.大量的实验进展也报道了非贵金属单原子同样能在其他反应中展现出优异的性能,如氧析出反应(OER)、氢析出反应(HER)和氧还原反应(ORR).对于单原子催化剂,还有很多问题需要我们去解决,例如基体对于催化过程的具体影响、非贵金属的电子结构对于其催化性能的影响,以及单原子在基体上产生相互作用的位点等问题.纵然有许多问题需要更加深入的研究,但是单原子概念的出现,使得非贵金属催化剂材料取代传统贵金属催化剂成为了可能.  相似文献   

6.
杂原子掺杂的Fe-NC催化剂在氧还原反应中表现出优异的性能.本工作采用密度泛函理论研究了S原子掺杂对Fe-NC单原子催化剂电子结构的调控及促进氧还原反应的作用机理,分析了硫原子掺杂后Fe-NC催化剂的稳定构型,S原子对FeN4活性位点电子结构的调控,以及氧气的吸附和氧还原反应作用机理.研究结果表明,在FeN4活性位点周围掺杂少量S原子,可以提高催化剂的稳定性.S原子掺杂提高氧还原性能的机理为:(1)S原子的掺杂降低了催化剂的带隙,提高催化剂导电性,有利于电催化氧还原反应;(2)S原子的掺杂可以提高催化剂吸附氧气的能力,有利于氧还原反应;(3)体系中引入四个S原子可以降低氧还原反应的过电位,提高FeN4位点催化氧还原反应的活性.这项工作可能为基于碳材料的单原子催化剂上杂原子掺杂的调控提供新的思路.  相似文献   

7.
本研究将单原子分散的Fe-N4位点锚定在氮掺杂空心多孔碳球上用于电催化氧还原反应,研究表明,所制备的FeSAs/HNCSs-800催化剂表现出优异的电催化氧还原性能,其起始电位为0.925 V,半波电位为0.867 V。球差电镜和同步辐射X射线吸收光谱证实了催化剂中存在高度分散的Fe-N4单原子位点。通过密度泛函理论计算证明单原子Fe-N4位点是氧还原反应有效的活性位点,其相邻的C缺陷可以有效调控单原子Fe的电子结构,进而提高电催化氧还原性能。  相似文献   

8.
单原子催化剂(SAC)由于其低成本和在各种电催化反应中潜在的高催化活性而被认为是铂族金属的有前景的替代材料,但仍然缺乏对不同金属氮碳材料催化剂之间活性差异的原子机理的理解。在此,通过实验和理论研究相结合,研究了非贵金属氮碳材料(Me-N-C,Me = Fe和Co)作为模型催化剂,以探索在普遍的pH值下氧还原反应(ORR)和氢析出反应(HER)的催化活性以及相对应的反应机理。原子理论模拟表明,Fe-N-C具有比Co-N-C高的ORR活性,这是因为其速率决定步骤的反应势垒较低,而HER的活性趋势却相反。我们的模拟结果与实验观察结果一致。  相似文献   

9.
《电化学》2021,(2)
单原子催化剂(SAC)由于其低成本和在各种电催化反应中潜在的高催化活性而被认为是铂族金属的有前景的替代材料,但仍然缺乏对不同金属氮碳材料催化剂之间活性差异的原子机理的理解。在此,通过实验和理论研究相结合,研究了非贵金属氮碳材料(Me-N-C,Me=Fe和Co)作为模型催化剂,以探索在普遍的p H值下氧还原反应(ORR)和氢析出反应(HER)的催化活性以及相对应的反应机理。原子理论模拟表明,Fe-N-C具有比Co-N-C高的ORR活性,这是因为其速率决定步骤的反应势垒较低,而HER的活性趋势却相反。我们的模拟结果与实验观察结果一致。  相似文献   

10.
单原子催化剂(SAC)是在基底材料上锚定孤立的金属原子,具有金属位点结构稳定以及活性中心高度均匀、配位环境可调和原子利用效率高等优点.因此, SAC有着桥接非均相和均相催化的巨大潜力.此外, SAC还为探索催化结构-性能关系以及研究原子尺度的催化机制提供了一个基本平台.近年来, SAC的合理设计和可控合成得到较大发展,它们表现出在金属表面上无法实现的显著的催化活性和选择性.尽管近期SAC研究十分热门,但仍然存在一些巨大的挑战.首先,缺乏一套统一标准为新型SAC的设计提供指导.不同的金属中心具有不同的化学和电子特性,因此合成一种SAC的指导原则不能简单地外推到另一种.其次,由于缺乏对SAC形成机制的全面了解, SAC材料中的键长、氧化态、配位数和配位阴离子种类等局部结构仍然难以调控.此外,金属单原子(SA)的负载量也难以有效控制,这主要是由于吉布斯-汤姆逊效应经常导致锚定的单原子发生团聚.虽然,氮掺杂可以缓解原子聚集,但是简单地增加氮含量并不能总是提高SA的负载量.目前,如何将不同的金属元素位点合成于一个SAC材料中还存在很多知识盲区.本文评述了Xin等(Nat. Mater., 202...  相似文献   

11.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2-based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2-based materials. Finally, an outlook about the optimization of MoS2-based catalysts used in electrochemical N2 fixation are given.  相似文献   

12.
氨在化肥、染料、药品和炸药的制造中起着重要作用.目前,传统的Haber-Bosch工艺主要用于NH3的大规模工业化生产,在苛刻的反应条件(300~500℃,150~300 atm)下不可避免地伴随着温室气体的过量排放.因此,必须寻求一种绿色并且可持续的方法来生产NH3.电化学还原N2 (NRR)已成为在环境条件下将N2连续固定NH3的一种有吸引力的替代方法.由于稳定的N-N具有较强的偶极矩并与析氢反应存在激烈竞争,因此需要高效的NRR催化剂.TiO2是典型的n型半导体,被认为是一种很有前途的NRR电催化剂.最近的研究表明,La2O3对N2还原电催化也具有活性,然而镧金属的稀土性质限制了其大规模应用.本文研究发现镧可以作为一种有效的掺杂剂提高TiO2的NRR活性.通过水热法制备了镧掺杂的TiO2纳米棒(La-TiO2).透射电子显微镜结果表明,原始TiO2与La-TiO2在形貌上都是纳米棒,镧的引入对其形貌并没有显著影响.选区电子衍射证实了La-TiO2纳米棒的高结晶度和四边形单晶结构.电子自旋共振分析结果表明La-TiO2纳米棒中存在氧空位.La-TiO2的线性扫描伏安曲线结果表明,在N2饱和电解液中的电流密度明显大于在Ar饱和电解液中,说明NRR的发生.为了进一步证实这一假设,在五个不同电位下分别进行了一系列的计时电流测试,结果表明,连续电解2h后在-0.70 V时,NH3产率最高,达23.06 μg h-1 mgcat-1,并且法拉第效率也最大,达14.54%.此外,电解2h后,没有检测到副产物N2H4,表明La-TiO2催化剂对NH3合成具有良好的选择性.本文还比较了La-TiO2/CP,TiO2/CP和CP的NRR电催化性能,结果表明,La-TiO2/CP的NH3产率最高,说明La的引入提高了La-TiO2的NRR活性.La-TiO2/CP通过在-0.70 V下连续6次循环测试以及连续48 h电解测试证实La-TiO2对NRR电催化具有良好的电化学稳定性.通过对La-Ov构型进行密度泛函理论计算,重点研究*N2+H++e-→*NNH的反应步骤,由于*N2加氢的自由能垒较低,La-TiO2更容易激活N2分子,计算了La-TiO2和纯TiO2上*NNH中间体的电荷密度差异,*NNH与La-TiO2之间存在更多的电荷转移.采用N-N键的积分晶体轨道哈密顿布居(ICOHP)分析出La-TiO2的ICOHP负值较小(-16.67 vs.-19.93),说明N-N键的活化更多.  相似文献   

13.
Cost‐effective carbon‐based catalysts are promising for catalyzing the electrochemical N2 reduction reaction (NRR). However, the activity origin of carbon‐based catalysts towards NRR remains unclear, and regularities and rules for the rational design of carbon‐based NRR electrocatalysts are still lacking. Based on a combination of theoretical calculations and experimental observations, chalcogen/oxygen group element (O, S, Se, Te) doped carbon materials were systematically evaluated as potential NRR catalysts. Heteroatom‐doping‐induced charge accumulation facilitates N2 adsorption on carbon atoms and spin polarization boosts the potential‐determining step of the first protonation to form *NNH. Te‐doped and Se‐doped C catalysts exhibited high intrinsic NRR activity that is superior to most metal‐based catalysts. Establishing the correlation between the electronic structure and NRR performance for carbon‐based materials paves the pathway for their NRR application.  相似文献   

14.
Cost-effective carbon-based catalysts are promising for catalyzing the electrochemical N2 reduction reaction (NRR). However, the activity origin of carbon-based catalysts towards NRR remains unclear, and regularities and rules for the rational design of carbon-based NRR electrocatalysts are still lacking. Based on a combination of theoretical calculations and experimental observations, chalcogen/oxygen group element (O, S, Se, Te) doped carbon materials were systematically evaluated as potential NRR catalysts. Heteroatom-doping-induced charge accumulation facilitates N2 adsorption on carbon atoms and spin polarization boosts the potential-determining step of the first protonation to form *NNH. Te-doped and Se-doped C catalysts exhibited high intrinsic NRR activity that is superior to most metal-based catalysts. Establishing the correlation between the electronic structure and NRR performance for carbon-based materials paves the pathway for their NRR application.  相似文献   

15.
《中国化学快报》2021,32(10):3137-3142
Ammonia (NH3) is considered an attractive candidate as a clean, highly efficient energy carrier. The electrocatalytic nitrogen reduction reaction (NRR) can reduce energy input and carbon footprint; therefore, rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH3 synthesis. Herein, we report that the enzymatic mechanism is the more favourable pathway for NRR, due to lower limiting potential (−0.44 V), lower free energy (only 0.02 eV) of the first hydrogenation step (*N–N to *NH–N), and more electron transfer from Fe2B2 to the reaction species. In addition, both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step. Therefore, we have demonstrated that Fe2B2 is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH3 synthesis.  相似文献   

16.
氨是一种重要的化工原料和能量载体,“哈伯反应”是工业上合成氨最主要的方法,但是该方法存在着能耗高,大量排放温室气体CO2以及转化率低等问题。近年来,常温常压下基于多相催化剂的电化学还原N2反应(NRR)来制备氨因其原料(N2 + H2O)易得,不依赖传统化石能源以及条件温和等原因而表现出巨大的应用潜能,并受到了科学家的广泛关注。然而目前NRR仍存在着如催化剂以贵金属材料为主,催化效率低和催化机理未明确等问题亟待解决。本综述主要总结了电催化NRR的最新研究成果,首先介绍了电催化NRR热力学和催化机理,接着重点列举了基于非贵金属催化剂的研究进展,包括过渡金属氧化物、氮化物、硫化物、非金属催化剂及单原子催化剂等,然后讨论了几种NRR电催化剂的改性方法,以及常见的产物氨的定性定量方法,最后,就目前该研究方向中仍待解决的问题进行了总结,并对下一步的研究进行了展望。  相似文献   

17.
王婷  李绍雄  赫丙玲  朱晓娟  罗永岚  刘倩  李廷帅  卢思宇  叶晨  Abdullah M.Asiri  孙旭平 《催化学报》2021,42(6):1024-1029,中插46-中插52
NH3作为一种必需的活化氮源,在化肥、染料、爆炸物和药物等的制造中起到了关键作用;同时,它也是一种在交通运输领域具有吸引力的无碳能源载体.工业上生产氨气使用典型的哈伯-博世工艺,但是此工艺涉及大量的能源消耗和碳排放,给环境带来巨大的压力.电化学氮还原反应(NRR)能够在温和环境下实现环境友好、节能的氨合成,但此过程需要高效的电催化剂.高效的NRR催化剂(Au、Ag、Pd和Ru)储量少、成本高,阻碍了它的实际应用.因此,设计和开发由地球上丰富的元素制成的具有成本效益的催化剂来代替NRR催化剂意义重大.本课题组最近的研究(Chem.Commun.,2018,54,12966-12969)表明,SnO2在环境条件下具有电催化氧化活性,但其低电导率限制了其性能,可通过氟掺杂或石墨烯杂化予以解决.氧化铟锡(ITO)作为一种含SnO2的材料,导电性好,可望用于NRR的高效电催化剂中.因此,本文采用商用氧化铟锡玻璃(ITO/G)作为催化剂电极,在温和环境条件下进行N2-NH3的电化学转化,并呈现出对生成氨气有较高的选择性.XRD和XPS结果表示,商用ITO/G中存在In,Sn和O元素;SEM显示ITO/G具有清晰的纳米薄膜结构和267 nm的截面厚度;相应的EDX谱图显示In,Sn和O元素分布均匀,且原子比为32.11:3.16:64.74.采用紫外-可见光谱及线性扫描伏安和恒电位极化等电化学测试研究了商用ITO/G的NRR活性.在0.5 M LiClO4电解液中测试时,于-0.40 V vs.RHE条件下,ITO/G的NH3产率为1.06×10-10 mol s-1 cm-2,其法拉第效率为6.17%.15N同位素标记实验证实了所测到的NH3是由ITO/G催化的N2电还原反应生成的.利用第一性原理计算探讨了在ITO催化剂上可能的NRR反应机理,确定了ITO催化剂的NRR活性位点、N2化学吸附活性位点以及NRR的反应途径.此外,24 h恒电位(-0.40 V vs.RHE)极化测试和2 h恒电位极化(-0.40 V vs.RHE)测试后的XRD和SEM结果表明,该催化剂具有较高的电化学稳定性.综上所述,商用ITO/G用作在环境条件下将N2转化为NH3的有效催化剂电极,将为开发人工固定氮气的ITO基纳米结构提供一种研究途径.  相似文献   

18.
NH3 plays an important role in modern society as an essential building block in the manufacture of fertilizers, aqueous ammonia, plastics, explosives, and dyes. Additionally, it is regarded as a green alternative fuel, owing to its carbon-free nature, large hydrogen capacity, high energy density, and easy transportation. The Haber-Bosch process plays a dominant role in global NH3 synthesis; however, it involves high pressure and temperature and employs N2 and H2 as feeding gases, thus suffering from high energy consumption and substantial CO2 emission. As a promising alternative to the Haber-Bosch process, electrochemical N2 reduction enables sustainable and environmentally benign NH3 synthesis under ambient conditions. Moreover, its applied potential is compatible with intermittent solar, wind, and other renewable energies. However, efficient electrocatalysts are required to drive N2-to-NH3 conversion because of the extremely inert N≡N bond. To date, significant efforts have been made to explore high-performance catalysts with high efficiency and selectivity. Generally, noble-metal catalysts exhibit efficient performance for the NRR, but their scarcity and high cost limit their large-scale application. Therefore, considerable attention has been focused on earth-abundant transition-metal (TM) catalysts that can use empty or unoccupied orbitals to accept the lone-pair electrons of N2, while donating the abundant d-orbital electrons to the antibonding orbitals of N2. However, these catalysts may release metal ions, leading to environmental pollution. Most of these TM electrocatalysts may also favor the formation of TM—H bonds, facilitating the hydrogen evolution reaction (HER) during the electrocatalytic reaction. Recent years have seen a surge in the exploration of metal-free catalysts (MFCs). MFCs mainly include carbon-based catalysts (CBCs) and some boron-based and phosphorus-based catalysts. Generally, CBCs exhibit a porous structure and high surface area, which are favorable for exposing more active sites and providing rich accessible channels for mass/electron transfer. Moreover, the Lewis acid sites of most metal-free compounds could accept the lone-pair electron of N2 and adsorb N2 molecules by forming nonmetal—N bonds, further widening their potential for electrocatalytic NRR. Compared with metal-based catalysts, the occupied orbitals of metal-free catalysts can only form covalent bonds or conjugated π bonds, hindering electron donation from the electrocatalyst to N2 and molecular activation. In this review, we summarize the recent progress in the design and development of metal-free electrocatalysts (MFCs) for the ambient NRR, including carbon-based catalysts, boron-based catalysts, and phosphorus-based catalysts. In particular, heteroatom doping (N, O, S, B, P, F, and co-dopants), organic polymers, carbon nitride, and defect engineering are highlighted. We also discuss strategies to boost NRR performance and provide an outlook on the development perspectives of MFCs.  相似文献   

19.
TiO2 is a model transition metal oxide that has been applied frequently in both photocatalytic and electrocatalytic nitrogen reduction reactions (NRR). However, the phase which is more NRR active still remains a puzzle. This work presents a theoretical study on the NRR activity of the (001), (100), (101), and (110) surfaces of both anatase and rutile TiO2. We found that perfect surfaces are not active for NRR, while the oxygen vacancy can promote the reaction by providing excess electrons and low-coordinated Ti atoms that enhance the binding of the key intermediate (HNN*). The NRR activity of the eight facets can be unified into a single scaling line. The anatase TiO2(101) and rutile TiO2(101) surfaces were found to be the most and the second most active surfaces with a limiting potential of −0.91 V and −0.95 V respectively, suggesting that the TiO2 NRR activity is not very phase-sensitive. For photocatalytic NRR, the results suggest that the anatase TiO2(101) surface is still the most active facet. We further found that the binding strength of key intermediates scale well with the formation energy of oxygen vacancy, which is determined by the oxygen coordination number and the degree of relaxation of the surface after the creation of oxygen vacancy. This work provides a comprehensive understanding of the activity of TiO2 surfaces. The results should be helpful for the design of more efficient TiO2-based NRR catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号