首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用低成本溶胶凝胶旋涂法制备了不同Mg含量的Zn_(1-x)Mg_xO薄膜,用其代替传统化学水浴法制备的CdS作为铜铟镓硒(Cu(In,Ga)Se_2,CIGS)薄膜太阳电池的缓冲层材料.用X射线衍射仪、原子力显微镜、紫外可见吸收光谱和X射线光电子能谱仪等研究了Mg掺杂量对Zn_(1-x)Mg_xO薄膜的结构、形貌、光学性能及Zn_(1-x)Mg_xO/CIGS异质结之间能带排列的影响.结果表明:所制备的Zn_(1-x)Mg_xO薄膜均为非晶结构;随着Mg掺入量的增加,Zn_(1-x)Mg_xO薄膜的表面形貌由条纹状变为六方形纳米颗粒,表面粗糙度由23.53nm减小到1.14nm;光学带隙值由3.55eV增大到3.62eV;Zn_(1-x)Mg_xO/CIGS之间的导带偏移值由+0.68eV减小到-0.33eV,导带排列由"尖峰状"变为"悬崖状";当配制的溶液中Mg源和Zn源的摩尔比为0.1时,所制备的Zn0.82Mg0.18O/CIGS之间的导带偏移值为+0.22eV,电池效率最高,达5.83%.  相似文献   

2.
张晗  裴磊磊  宿世臣 《发光学报》2017,38(7):905-910
利用脉冲激光沉积(PLD)设备在蓝宝石衬底上制备了高质量Zn1-xMgxO单晶薄膜,并对其结构和光学特性进行了深入细致的研究。通过能量衍射谱(EDS)确认Zn1-xMgxO薄膜的Mg组分为45%。在Zn0.55Mg0.45O薄膜的X射线衍射谱(XRD)中观测到了明显的位于36.67°的衍射峰,对应的是(111)晶向的立方相ZnMgO。从透射光谱中可以看出,Zn0.55Mg0.45O具有陡峭的吸收边,没有发生相分离,在透射电镜图谱中也得到了证实。该ZnMgO薄膜还表现出了优异的光学特性,在Zn0.55Mg0.45O材料体系中实现了峰位位于310 nm的紫外光泵浦受激发射,其激光发射的阈值仅为22 kW/cm2。  相似文献   

3.
鲍善永  董武军  徐兴  栾田宝  李杰  张庆瑜 《物理学报》2011,60(3):36804-036804
利用脉冲激光沉积技术,通过改变沉积过程中的氧气压力,在蓝宝石(0001)基片上制备了一系列ZnMgO合金.通过X射线衍射、反射和透射光谱以及室温和变温荧光光谱,对薄膜的结构和光学性能进行了系统地表征,分析了工作气压对ZnMgO合金薄膜的结晶质量及光学特性的影响.研究结果表明:随着沉积环境中氧气压力的增大,ZnMgO薄膜的结晶质量下降,富氧环境下,与蓝宝石晶格平行的ZnO晶粒的出现是导致薄膜结晶质量下降的主要原因;相对于本征ZnO,不同氧气环境下沉积的ZnMgO薄膜的紫外荧光峰均出现了不同程度的蓝移.随着工 关键词: ZnO Mg掺杂 脉冲激光沉积 薄膜生长 光学特性  相似文献   

4.
用分子束外延设备在c面蓝宝石衬底上生长得到高质量Mg x Zn1-x O薄膜。X射线衍射显示,当Mg摩尔分数在0~32.7%范围内时,薄膜保持六方结构,(002)衍射峰半高宽为0.08°~0.12°,薄膜结晶质量与现有报道的最高水平相当。随着薄膜中Mg含量的增加,紫外发光峰由378 nm蓝移至303 nm。对Mg0.108Zn0.892O薄膜变温光致发光光谱的研究发现,束缚激子发光随温度变化存在两个不同的猝灭过程。对不同Mg含量薄膜共振拉曼光谱的研究发现,A1(LO)声子模频移与Mg含量在一定范围内呈线性关系,这为确定Mg x Zn1-x O薄膜中的Mg含量提供了一种简单高效的方法。通过拉曼光谱与X射线衍射对比研究发现,拉曼光谱在确定MgZnO材料相变时具有更高的灵敏度。最后,研究了Mg0.057Zn0.943O薄膜的变温共振拉曼光谱,对A1(LO)和A1(2LO)声子模随温度而变化的现象给出了一定的理论解释。  相似文献   

5.
MOCVD法生长ZnO薄膜的结构及光学特性   总被引:7,自引:2,他引:5  
采用MOCVD方法在c Al2 O3衬底上生长出了具有单一c轴取向的ZnO薄膜 ,采用X射线衍射 (XRD)、Raman散射、X射线光电子能谱 (XPS)及光致发光 (PL)谱等方法对ZnO薄膜的结构及光学特性进行分析测试。XRD分析只观察到ZnO薄膜 (0 0 0 2 )衍射峰 ,其FWHM数值为 0 1 84°。Raman散射谱中 ,4 35 32cm- 1 处喇曼峰为ZnO的E2 (high)振动模 ,A1 (LO)振动模位于 5 75 32cm- 1 处。XPS分析表明 :ZnO薄膜表面易吸附游离态氧 ,刻蚀后ZnO薄膜O1s光电子能谱峰位于 5 30 2eV ,更接近Zn—O键中O1s电子结合能 (5 30 4eV)。PL谱中 ,在3 2 8eV处观察到了自由激子发射峰 ,而深能级跃迁峰位于 2 5 5eV ,二者峰强比值为 4 0∶1 ,表明生长的ZnO薄膜具有较高的光学质量  相似文献   

6.
针对目前关于退火温度对原子层沉积法(ALD)制备ZnMgO薄膜晶体结构和光学性质影响鲜有报道的现象,进行了相应的实验研究分析。采用ALD在石英衬底上制备ZnMgO合金薄膜,对制得的样品在空气中进行不同温度的退火处理。利用X射线多晶衍射仪(XRD)、光致发光谱(PL)和紫外可见(UV-Vis)吸收光谱测试,系统的分析了不同退火温度对ALD法制备ZnMgO薄膜晶体结构和光学性能的影响。XRD测试结果表明:退火温度为600 ℃时,薄膜的晶体质量得到改善,且(100)衍射峰的强度明显增强。结合PL和UV-Vis吸收光谱的测试分析得出:退火温度为600 ℃时,能明显促进薄膜中Mg组分的增加使薄膜的禁带宽度进一步增大。从而说明适当温度的退火处理可有效的改善ZnMgO薄膜的晶体质量及光学特性。  相似文献   

7.
采用高温固相法制备了一系列(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)(0≤x≤0.25)绿色荧光粉,并研究了Mg离子对(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)的结构、荧光以及长余辉发光性能的影响。Mg离子取代Zn进入Zn_2GeO_4晶格,形成(Zn_(1-x),Mg_x)_2GeO_4固溶体,并产生了晶格畸变。光谱分析结果表明,样品中位于533 nm的绿色荧光源于Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁。随着Mg离子浓度的增加,(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)样品的激发光谱出现了蓝移现象,说明Mg离子进入到Zn_2GeO_4晶格中对其晶格结构产生了影响,导致(Zn_(1-x),Mg_x)_2GeO_4的带宽发生改变。发射光谱则表明Mg离子进入Zn_2GeO_4晶格引起Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁绿色荧光发光强度的增强。Zn_2GeO_4基质中的氧空位缺陷陷阱深度由于基质带宽的变化而变深,样品具有良好的长余辉发光效果。通过热释光谱分析研究了材料中缺陷陷阱的特征,进一步证实了(Zn_(1-x),Mg_x)_2GeO_4中缺陷陷阱深度发生改变。根据光谱分析结果给出了(Zn_(1-x),Mg_x)_2GeO_4∶Mn~(2+)中荧光与余辉发光的产生机理。  相似文献   

8.
吴鹏 《原子与分子物理学报》2003,(收录汇总):67-72
本文采用分子束外延技术,通过对金属分子束的精确控制,在MgO(002)基底上成功生长了Ga_(x)N_(2)∶Zn_(3-x)合金薄膜.高分辨率单晶X光衍射仪表征结果表明Ga_(x)N_(2)∶Zn_(3-x)合金薄膜仍是以(400)Zn_(3)N_(2)为主导的复合晶体结构,对衍射数据的分析得到该薄膜晶粒尺寸小.用扫描电子显微镜和能谱射线分析仪对其表面和成分做了深入的分析和讨论,在固定的金属流量比的生长环境下,不同厚度的样品在成膜后x均为0.65,化学通式Zn_(2.35)Ga_(0.65)N_(2).该结果表明Ga元素属于重度掺杂,同时也体现了分子束外延技术在共掺杂技术中的优越性.本文也测量并讨论了Zn_(2.35)Ga_(0.65)N_(2)薄膜的光学性能,实验得到的1.85 eV的光学带隙与理论推算基本吻合,说明Ga的掺入有Ga-N结构的形成.同时也说明,Ga元素的掺入,实现了对Zn_(3)N_(2)薄膜的光学带隙的调控.最后对该薄膜的电子输运性能进行表征,测量结果表明其为p型半导体薄膜.本文的实验技术和结果也为今后对Zn类化合物半导体的研究奠定了基础.  相似文献   

9.
用脉冲激光沉积(PLD)法在不同温度的Si(111衬底上成功制备了c轴择优取向的Mg0.05Zn0.95O薄膜.通过X射线衍射(XRD)和光致发光谱(PL)研究了衬底温度对Mg0.05Zn0.95O薄膜结构和发光特性的影响,探讨了膜的结晶质量与发光特性之间的关系.结果表明,在衬底温度为450℃时生长的Mg0.05Zn0.95O薄膜具有很好的轴取向和较强的光致发光峰.室温下分别用激发波长为240,300和325nm的氙灯作为激发光源得到不同样品的PL谱,分析表明紫外发光峰和紫峰来源于自由激子的复合辐射且发光强度与薄膜的结晶质量密切相关,蓝绿发光峰与氧空位有关.此外,探讨了衬底温度影响紫外光致发光峰红移和蓝移的可能机理.  相似文献   

10.
氧化锌材料是新一代宽禁带光电子半导体材料,我们通过等离子体分子束外延设备,在a plane的蓝宝石衬底生长了高质量的氧化锌外延材料。在生长过程中用反射高能电子束衍射仪(RHEED),在位地研究了生长时材料薄膜的表面形貌。通过调节ZnMgO材料镁的组份,生长了禁带宽度可调的宽禁带材料。用紫外-可见透射光谱研究了ZnO,Zn0.89Mg0.11O和Zn0.80Mg0.20O薄膜材料的透射和吸收光谱性质,观察到Zn0.89Mg0.11O,Zn0.80Mg0.20O材料的吸收边的蓝移现象等。以上说明了我们用分子束外延生长 收稿日期:2003 07 22·09·  第1期StructuralandOpticalCharacterizationofZnOandZnMgOFilmsona-planesapphiresbyMolecularBeamEpitaxy2004年设备成功的生长了高质量的氧化锌和组份渐变的ZnMgO薄膜材料。  相似文献   

11.
Si(100)衬底上Mg_(0.33)Zn_(0.67)O薄膜的结构及光学性能   总被引:2,自引:2,他引:0  
采用射频磁控溅射法在Si(100)衬底上制备了Mg_(0.33)Zn_(0.67)O薄膜,研究了Mg_(0.33)Zn_(0.67)O薄膜的结构和光学性能。结果表明,Si(100)衬底上Mg_(0.33)Zn_(0.67)O薄膜呈六方纤锌矿结构,薄膜沿c方向取向生长,且c轴方向晶格增大0.03 nm。薄膜呈现优异的半导体特性,激子吸收峰位于297 nm,禁带宽度约为4.3 eV。薄膜平均粒径约为20 nm。薄膜在深紫外激发下的荧光发射位于368 nm。  相似文献   

12.
利用MOCVD技术生长As掺杂的p-ZnMgO薄膜   总被引:1,自引:1,他引:0       下载免费PDF全文
赵龙  殷伟  夏晓川  王辉  史志锋  赵旺  王瑾  董鑫  张宝林  杜国同 《发光学报》2011,32(10):1020-1023
利用GaAs夹层掺杂的新方法,采用金属有机化学气相沉积(MOVCD)技术,通过控制生长温度,在蓝宝石衬底上成功制备出As掺杂的p型ZnMgO薄膜.利用X射线衍射分析(XRD)、霍尔效应测试和光致发光(PL)谱等表征方法对薄膜的晶体结构、电学性能和光学特性进行分析.结果表明:高温生长的ZnMgO薄膜具有良好的c轴取向性;...  相似文献   

13.
张国庆  赵凤岐  张晨宏 《发光学报》2013,34(10):1300-1305
采用改进的Lee-Low-Pines(LLP)中间耦合方法研究纤锌矿Mg x Zn1-x O/Mg0.3Zn0.7O抛物量子阱材料中的极化子能级,给出极化子基态能量、跃迁能量(第一激发态到基态)和不同支长波光学声子对电子态能级的贡献随量子阱宽度d的变化规律。理论计算中考虑了纤锌矿Mg x Zn1-x O/Mg0.3Zn0.7O抛物量子阱材料中声子模的各向异性和介电常数、声子(类LO和类TO)频率等随空间坐标Z变化(SD)效应对极化子能量的影响。结果表明,Mg x Zn1-x O/Mg0.3Zn0.7O抛物量子阱中电子与长波光学声子相互作用对极化子能级的移动很大,使得极化子能量明显降低。阱宽较小时,半空间长波光学声子对极化子能量的贡献较大,而定域长波光学声子的贡献较小;阱宽较大时,情况则正好相反。在d的变化范围内,电子与长波光学声子相互作用对极化子能级的移动(约67~79 meV)比Al x Ga1-x As/Al0.3Ga0.7As抛物量子阱中的相应值(约1.8~3.2 meV)大得多。因此,讨论ZnO基量子阱中电子态问题时要考虑电子与长波光学声子的相互作用。  相似文献   

14.
MgxZn1-xO材料是一种新型光电功能材料.采用溶胶凝胶法在石英玻璃上制备了Mg0.25Zn0.75O薄膜,理论结合实验研究了Mg0.25Zn0.75O薄膜的结构和光学性能.研究表明,石英玻璃衬底上Mg0.25Zn0.75O薄膜呈六方纤锌矿结构,薄膜均匀,平均粒径约为20 nm.吸收光谱表明吸收带边始于360 nm,相应的禁带宽度为3.83 eV.发光光谱包含三个发射峰,分别位于384.9 nm(3.23 eV),444.8 nm(2.79 eV)和533.6 nm(2.32 eV),激发光谱峰位于378 nm.由于Mg离子的间隙缺陷导致Mg0.25Zn0.75O薄膜晶格增大,禁带宽度变宽,紫外、蓝光和绿光发射分别红移59,14和12.6 nm.  相似文献   

15.
制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用脉冲激光沉积(PLD)方法在单晶Si(100)衬底上沿c轴方向生长单晶Zn1-xMgxO薄膜,通过X射线衍射(XRD)、原子力显微镜(AFM)、扫描电镜(SEM)和荧光光谱(PL)研究了膜厚、Mg含量、退火温度及氧气氛等制备工艺对Zn1-xMgxO薄膜的结构、形貌和光学性质的影响.实验结果表明,Mg含量x≤0.15时, Zn1-xMgxO保持六角纤锌矿结构,0.25≤x≤0.35时为立方结构,经过600℃退火之后,Zn0.75Mg0.25O转化为六角纤锌矿结构;后续退火有利于晶粒长大,一定的氧气氛也有利于减少晶体缺陷和薄膜的c轴应力,但是过量的氧气容易与Mg元素结合形成MgO,不利于ZnO 六角纤锌矿结构的生长.对Zn0.925Mg0.075O薄膜进行荧光光谱分析,分析结果表明缺陷发光峰主要与锌空位、锌位氧(Ozn)或氧间隙(Oi)等缺陷有关,退火可以使紫外发射峰蓝移.  相似文献   

16.
Zn1-xCoxO稀磁半导体薄膜的结构及其磁性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用X射线吸收精细结构、X射线衍射和磁性测量等技术研究脉冲激光气相沉积法制备的Zn1-zCoxO(x=0.01,0.02)稀磁半导体薄膜的结构和磁性.磁性测量结果表明Zn1-xCoxO样品都具有室温铁磁性.X射线衍射结果显示其薄膜样品具有结晶良好的纤锌矿结构.荧光X射线吸收精细结构测试结果表明,脉冲激光气相沉积法制备的样品中的Co离子全部进入ZnO晶格中替代了部分Zn的格点位置,生成单一相的Zn1-xCoxO稀磁半导体.通过对X射线吸收近边结构谱的分析,确定Zn1-xCoxO薄膜中存在O空位,表明Co离子与O空位的相互作用是诱导Zn1-xCoxO产生室温铁磁性的主要原因.  相似文献   

17.
熊光英  董健 《光学学报》1993,13(5):70-474
用真空蒸镀法制备了稀释磁性半导体Zn_(1-x)Fe_xSe多晶薄膜,用X射线衍射和电子扫描电镜测定了薄膜结构和成份.其光吸收数据表明:光学能隙E_g随着Fe~(2+)成分x增加而线性减小,用线性回归法拟合得其关系.E_g=2.722-2.2x(eV).  相似文献   

18.
郑树文  范广涵  张涛  皮辉  徐开放 《物理学报》2014,63(8):87101-087101
利用密度泛函理论的平面波超软赝势方法,对纤锌矿T M_(0.125)Zn_(0.875)O(TM=Be,Mg)合金和Ga掺杂T M_(0.125)Zn_(0.875)O的结构参数、能带、电子态密度和光学能隙进行计算和分析,结果表明:T M_(0.125)Zn_(0.875)O掺入Ga容易实现并且结构更稳定,T M_(0.125)Zn_(0.875)O合金掺Ga能获得很好的n型材料改性,能隙由导带底Ga 4s态和价带顶O 2p态决定,由于Bllrstein-Moss移动和多体效应,Ga掺杂后的T M_(0.125)Zn_(0.875)O光学能隙变大,这与实验结果相一致,T M_(0.125)Zn_(0.875)O掺Ga材料可作透明导电薄膜应用到紫外和深紫外光电子器件中。  相似文献   

19.
采用水热法和热处理技术制备了不同掺杂比例的Zn_(1-x)Cu_xAl_2O_4(x=0,0.05,0.10,0.15,0.20)纳米颗粒,通过X射线衍射(XRD)、场发射透射电子显微镜(FETEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外可见光谱(UV-Vis)对样品的晶体结构、形貌、元素分布、结合能和光学性能进行表征,并通过第一性原理计算得到了ZnAl_2O_4结构中存在的各种缺陷的能带结构。实验结果表明本方法制备的Zn_(1-x)Cu_xAl_2O_4纳米颗粒为尖晶石结构,XPS能谱说明Zn_(0.9)Cu_(0.10)Al_2O_4样品中Cu~(2+)全部占据了四面体位置,PL光谱显示Cu~(2+)掺杂的样品出现了猝灭现象,紫外光谱表明Cu~(2+)掺杂后样品出现了新的吸收峰。并结合第一性原理计算对样品的光学性质给出了合理解释。  相似文献   

20.
赵银女 《光子学报》2012,41(10):1242-1246
β-Ga2O3是一种宽带隙半导体材料,能带宽度Eg≈5.0eV,在光学和光电子学领域有广泛的应用.用射频磁控溅射方法在Si衬底和远紫外光学石英玻璃衬底制备了本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜,用紫外-可见分光光度计、X射线衍射仪、荧光分光光度计对本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜的光学透过、光学吸收、结构和光致发光进行了测量,研究了Zn掺杂和热退火对薄膜结构和光学性质的影响.退火后的β-Ga2O3薄膜为多晶结构,与本征β-Ga2O3薄膜相比,Zn掺杂β-Ga2O3薄膜的β-Ga2O3(111)衍射峰强度变小,结晶性变差,衍射峰位从35.69°减小至35.66°.退火后的Zn掺杂β-Ga2O3薄膜的光学带隙变窄,光学透过降低,光学吸收增强,出现了近边吸收,薄膜的紫外、蓝光及绿光发射增强.表明退火后Zn掺杂β-Ga2O3薄膜中的Zn原子被激活充当受主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号