首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 286 毫秒
1.
Electrical properties of stoichiometric iron sulfide (FeS) are investigated under high pressure with a designed diamond anvil cell. The process of phase transition is reflected by changing the electrical conductivity under high pressure, and the conductivity of FeS with the NiAs structure is found to be much smaller than other phases. Two new phase transitions without structural change are observed at 34.7 GPa and 61.3 GPa. The temperature dependence of the conductivity is found to be similar to that of a semiconductor when the pressure is higher than 35 GPa  相似文献   

2.
With anatase-type titanium dioxide as the raw materials, the futile type titanium dioxide single crystal is prepared using the floating zone method. The results of XRD measurement show that the grown crystal is highly crystalline with a futile structure, which has orientation to the c-axis. The four Raman vibration characteristic peaks (143, 240, 450 and 610 cm^-1) at room temperature show that the crystalline structure of the single crystal is a typical futile phase, meanwhile a new Raman peak at around 690 cm^-1 is found. The results of the Raman measurement at various temperatures for the single crystal show that the Raman frequency shifts are different.  相似文献   

3.
High-pressure Raman studies at room temperature are performed on CC14 up to 13 GPa. The Raman bands of the internal modes (v2, v4 and vl) show entirely positive pressure dependence. The slopes dω/dP of the internal modes exhibit two sudden changes at O. 73 GPa and 7.13 GPa, respectively. A new lower frequency mode (225 em-1) appears at 3.03 GPa, and the splitting of v2, v3 and v4 occurs at about 7.13 GPa. Moreover, Raman spectra of Fermi resonance show that the relative position of the v1 + v4 combination and the v3 fundamental firstly interchanges corresponding to that at ambient pressure, then the v1 + v4 combination disappears in the gradual process of compression. It is indicated that the pressure-induced phase transition from CC14 Ⅱ to CC14 Ⅲ occurs at 0.73 GPa, and CC14 Ⅲ undergoes a transition to CC14 IV below 3.03 GPa. Further CC14 Ⅳ transforms in a new high-pressure phase at about 7.13 GPa, and the symmetry of the new high-pressure phase is lower than that of CC14 Ⅳ. All the transitions are reversible during decompression.  相似文献   

4.
The properties of urea under high pressure and high temperature(HPHT) are studied using a China-type large volume cubic high-presentation apparatus(CHPA)(SPD-6 × 600).The samples are characterized by scanning electron microscopy(SEM), x-ray diffraction(XRD), and Raman spectroscopy.By directly observing the macroscopic morphology of urea with SEM, it is confirmed that the melting point of urea rises with the increase of pressure.The XRD patterns of urea residues derived under different pressures show that the thermal stability of urea also increases with the increase of pressure.The XRD pattern of the urea residue confirms the presence of C_3H_5N_5O(ammeline) in the residue.A new peak emerges at 21.80°, which is different from any peak of all urea pyrolysis products under normal pressure.A more pronounced peak appears at 708 cm~(-1) in the Raman spectrum, which is produced by C–H off-plane bending.It is determined that the urea will produce a new substance with a C–H bond under HPHT, and the assessment of this substance requires further experiments.  相似文献   

5.
High pressure behavior of sodium titanate nanotubes (Na2Ti2O5) is investigated by Raman spectroscopy in a diamond anvil cell (DAC) at room temperature. The two pressure-induced irreversible phase transitions are observed under the given pressure. One occurs at about 4.2 GPa accompanied with a new Raman peak emerging at 834 cm-1 which results from the lattice distortion of the Ti-O network in titanate nanotubes. It can be can be assigned to Ti-O lattice vibrations within lepidocrocite-type (H0.7Ti1.825V0.175O4・H2O)TiO6 octahedral host layers with V being vacancy. The structure of the nanotubes transforms to orthorhombic lepidocrocite structure. Another amorphous phase transition occurs at 16.7 GPa. This phase transition is induced by the collapse of titanate nanotubes. All the Raman bands shift toward higher wavenumbers with a pressure dependence ranging from 1.58-5.6 cm-1/GPa.  相似文献   

6.
梁浩  彭放  樊聪  张强  刘景  管诗雪 《中国物理 B》2017,26(5):53101-053101
In-situ angle dispersive x-ray diffraction(ADXRD) with synchrotron radiation source is performed on an ultra-high temperature refractory of MoSi_2 and Mo_5Si_3 by using a diamond anvil cell(DAC) at room temperature. While the pressureinduced volume reduction is almost constant, the value of the bulk modulus increases with the decrease of molybdenum content in the system. According to the Brich–Murnaghan equation, the bulk modulus 222.1(2.1) GPa with its pressure derivative 4 of MoSi_2, and the bulk modulus 308.4(7.6) GPa with its pressure derivative 0.7(0.1) of Mo_5Si_3 are obtained.The experimental data show that MoSi_2 has distinct anisotropic behavior, Mo_5Si_3 is less anisotropic than MoSi_2. The result shows that MoSi_2 and Mo_5Si_3 have the structural stabilities under high pressure. When the pressure reaches up to 41.1 GPa, they can still maintain their body-cantered tetragonal structures.  相似文献   

7.
PtS_2, which is one of the group-10 transition metal dichalcogenides, attracts increasing attention due to its extraordinary properties under external modulations as predicted by theory, such as tunable bandgap and indirect-to-direct gap transition under strain; however, these properties have not been verified experimentally. Here we report the first experimental exploration of its optoelectronic properties under external pressure. We find that the photocurrent is weakly pressuredependent below 3 GPa but increases significantly in the pressure range of 3 GPa–4 GPa, with a maximum ~ 6 times higher than that at ambient pressure. X-ray diffraction data shows that no structural phase transition can be observed up to26.8 GPa, which indicates a stable lattice structure of PtS_2 under high pressure. This is further supported by our Raman measurements with an observation of linear blue-shifts of the two Raman-active modes to 6.4 GPa. The pressure-enhanced photocurrent is related to the indirect-to-direct/quasi-direct bandgap transition under pressure, resembling the gap behavior under compression strain as predicted theoretically.  相似文献   

8.
Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman peaks can be observed. However, two significant discontinuities in the plots of Raman shift versus pressure indicate two phase transitions of 1-dodecene. One is liquid~olid transition at pressure of about 500 MPa, the other is solid-solid phase transition at pressure from 1300 to 1550 MPa. The latter is considered to be related to the orientational change of the plane structure of ethylene. A rudimentary phase diagrams for 1-dodecene, n-pentane, n-hexane are proposed based on the results and previous data.  相似文献   

9.
In-situ high pressure Raman spectra and electrical conductivity measurements of scheelite-structure compound PbMoO4 are presented. The Raman spectrum of PbMoO4 is determined up to 26.5 GPa on a powdered sample in a diamond anvil cell (DAC) under nonhydrostatic conditions. The PbMoO4 gradully experiences the trans- formation from the crystal to amorphous between 9.2 and 12.5 GPa. The crystal to amorphous transition may be due to the mechanical deformation and the crystalographic transformation. Furthermore, the electrical conductivity of PbMoO4 is in situ measured accurately using a microcircuit fabricated on a DAC based on the van der Pauw method. The results show that the electrical conductivity of PbMoO4 increases with increases of pressure and temperature. At 26.5 GPa, the electrical conductivity value of PbMoO4 at 295K is 1.93 - 10-4 S/cm, while it raises by one order of magnitude at 430K and reached 3.33 - 10-3 S/cm. However, at 430K, compared with the electrical conductivity value of PbMoO4 at 26.5 GPa, it drops by about two order magnitude at 7.4 GPa and achieves 2.81 × 10^-5 S/cm. This indicates that the effect of pressure on the electrical conductivity of PbMoO4 is more obvious than that of temperature.  相似文献   

10.
Based on the Raman spectrum measurement, we investigate the mechanism of proton exchange, by which the optical waveguides are formed in the LiNbO3 crystal which are proton doped. The proton source is formed by a mixture of benzoic and adipic acids. The experimental results show that there is a Raman formant peak of optical waveguide at 650cm^-1, and the higher the relative percentage of the mol ratio of adipic acid dilution, the higher the intensity of the Raman formant peak.  相似文献   

11.
The novel vacuum ultraviolet (VUV) excited Na3 Y9O3 (BO3)8:Tb^3+ (NYOB:Tb^3+) green phosphor is prepared. Strong VUV photoluminescence and high quenching concentration of Tb^3+ (20 wt%) are observed in NYOB: Tb^3+ and the strong emission are correlated with the unique layer-type structure of NYOB. All the characteristic 4 f - 5d transitions of Tb^3+ and the host absorption band in VUV region are identified in the excitation spectrum. Based on the results, the energy levels scheme of Tb^3+ in NYOB:Tb^3+ is first established. This newly developed NYOB:Tb^3+ phosphor shows excellent optical properties when compared with the commercial Zn2SiO4:Mn^2+ and would be a potential VUV-excited green phosphor.  相似文献   

12.
The BaW04-17 phase is synthesized at 5.0 GPa and 610~C with a cubic-anvil apparatus and identified by XRD. Raman scattering measurement is carried out to investigate the phase behaviour of a pure BaW04-Ⅱ phase (space group P21/n, Z = 8) under hydrostatic pressures up to 14.8 GPa at ambient temperature. In each spectrum recorded for this phase, 27 Raman modes are observed, and all bands shift toward higher wavenumber with a pressure dependence ranging from 3.8 to 0.2 cm- 1/GPa. No pressure-driven phase transition occurs in the entire pressure range in this study. Our results indicate that the previously reported high pressure phase of Ba WO4 at pressure above about 10 GPa and room temperature (Errandonea et al. Phys. Rev. B 73(2006)224103) is not the BaW04-Ⅱ phase.  相似文献   

13.
Polarized Raman spectra of ferroelectric relaxor 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (0.67PMN-0.33PT) single crystal are systematically investigated in a wide temperature range from -196 to 600℃ by micro-Raman scattering technique. The results clearly reveal that there are two structural phase transitions in such composite ferroelectric relaxor: the rhombohedral-tetragonal (R- T) phase transition and the tetragonal-cubic (T- C) phase transition. The former occurs at about TR-T =34℃, corresponding to the vanishing of the soft A1 mode at 106cm^-1 recorded in the parallel polarization. The latter appears at about TT-C = 144℃, which can be verified with the vanishing of mode at 780cm^-1 measured in the crossed polarization.  相似文献   

14.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

15.
PbMoO4原位高压拉曼光谱和电导率的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 钼酸铅(PbMoO4)具有高的声光品质因数、低的声损耗、良好的声阻抗匹配等性质,被广泛应用于声光偏转器、调制器、可调滤光器、声表面波器件等各类声光器件,其优异的低温闪烁性能亦引起人们的注意,具有在核设备方面的应用潜力。为探讨其晶体结构和物理性质,在金刚石对顶砧上原位测量了PbMoO4的拉曼光谱,并测量了其在几个不同压力点下电导率随温度的变化。实验发现,压力在12.5 GPa时,拉曼峰完全消失,说明压力在10.8~12.5 GPa之间PbMoO4样品出现了非晶态转变。当从26.5 GPa卸压到9.4 GPa时,PbMoO4的拉曼谱在低波数出现无序化,而在2.4 GPa压力下858 cm-1峰又重新出现,说明样品结构由无序向晶化回复。压力在10.8 GPa以上时,电导率随着温度的增加而显著增加,且随着压力的增加也明显增加。  相似文献   

16.
Thermophysical properties of undercooled liquid monotectic alloys are usually difficult to be determined because of the great dittlculty in achieving large undercoolings. We measure the surface tension of liquid Fe77.5 Cu13Mo9.5 monotectic alloy by an electromagnetic oscillating drop method over a wide temperature range from 1577 to 1784 K, including both superheated and undercooled states. A good linear relationship exists between the surface tension and temperature. The surface tension value is 1.588 N/m at the monotectic temperature of 1703K, and its temperature coefficient is -3.7 × 10^-4 Nm^-1 K^-1. Based on the Butler equation, the surface tension is also calculated theoretically. The experimental and calculated results indicate that the effect of the enriched element on droplet surface is much more conspicuous than the other elements to decrease the surface tension.  相似文献   

17.
We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature shows that the main peaks locate at 527 and 593nm, which are attributed to isolated emission centers of Ce^3+ ions.  相似文献   

18.
 以金属锆粉(Zr)和六方氮化硼粉(h-BN)为原料,结合高能球磨和高温高压合成技术,制备出了ZrN-ZrB2纳米复合材料。利用X射线衍射、透射电镜和拉曼光谱等测试手段,对材料的结构和合成规律进行了研究。结果表明,高能球磨过程中只合成出了ZrNx,没有出现ZrB2,从N、B原子与Zr进行固态反应的热力学和动力学方面分析了原因。利用Zr与BN粉球磨10 h后的混料,在压力为5 GPa、温度为1 300 ℃的条件下,制备出了具有高致密度的ZrN-ZrB2纳米复合材料。其维氏显微硬度(17 GPa)、热膨胀系数(7.57×10-6-1)和电阻率-温度系数(8.846×10-4-1)等材料参数的测量结果表明,ZrN-ZrB2复合材料是一种集优良的力学、热学和电学性能于一体的纳米复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号