首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An RF power coupler is a key component of the superconducting accelerating system in Chinese ADS proton linac injector I, which is used to transmit 15 kW RF power from the power source to the superconducting HWR cavity. According to the requirement of working frequency, power level, transmission capability and cooling condition, the physics design of coupler has been finished, which includes RF structure optimization, thermal simulation, thermal stress analysis and so on. Based on this design, the prototype of HWR coupler has been fabricated, and it has successfully passed the high power test.  相似文献   

2.
An RF power coupler is a key component of the superconducting accelerating system in Chinese ADS proton linac injector I, which is used to transmit 15 kW RF power from the power source to the superconducting HWR cavity. According to the requirement of working frequency, power level, transmission capability and cooling condition, the physics design of coupler has been finished, which includes RF structure optimization, thermal simulation, thermal stress analysis and so on. Based on this design, the prototype of HWR coupler has been fabricated, and it has successfully passed the high power test.  相似文献   

3.
The China Accelerator-Driven Sub-critical System(CADS) is a high intensity proton facility to dispose of nuclear waste and generate electric power.CADS is based on a 1.5 GeV,10 mA CW superconducting(SC) linac as a driver.The high energy section of the linac is composed of two families of SC elliptical cavities which are designed with geometrical beta 0.63 and 0.82.In this paper,the 650 MHz β=0.63 SC elliptical cavity is studied,including cavity optimization,multipacting,high order modes(HOMs) and generator RF power calculation.  相似文献   

4.
The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity. The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out. The results from the numerical simulations are in excellent agreement with the analytical results.  相似文献   

5.
Power couplers,used in China-ADS proton linac injector I,are required to transfer 6 kW RF power to the superconducting Spoke cavities.At present,first the two couplers of a coaxial design have been fabricated,which accomplished a high power test at IHEP.The test results indicated that couplers of this design are qualified to deliver10 kW RF power in continuous travelling wave mode.This paper describes the coupler’s room temperature test procedures and results and discusses the original high power test,which was terminated due to serious out-gassing and after some modifications.In the final test,the couplers smoothly exceeded the design power level.  相似文献   

6.
赵维  唐晓  史戎坚  侯汨 《中国物理 C》2012,36(8):765-768
The RF coupler is a key component for an accelerating structure which is the most important component for a linac. In order to feed microwave power into the accelerating cavities effectively, the coupler has to be well matched with the feeding waveguide. In this paper, an electron linac coupler was designed, constructed and tested. A numerical simulation method based on the Kyhl's method was employed to search for the optimal dimensions of the coupler. The frequency and the coupling coefficient as a function of the coupler dimensions were also calculated. The results fitted the Kyhl's method simulation results well and gave tolerances of the coupler. The coupler was brazed to the accelerating cavities and it was cold-tested and hot-tested. The experimental results were consistent with the numerical simulation results.  相似文献   

7.
This paper presents the first phase of design, analysis, and simulation for the klystron coaxial radio frequency(RF)output window. This study is motivated by 800 kW continuous wave(CW), 650 MHz klystrons for the future plan of circular electron–positron collider(CEPC) project. The RF window which is used in the klystron output section has a function to separate the klystron from the inner vacuum side to the outside, and high RF power propagates through the window with small power dissipation. Therefore, the window is a key component for the high power klystron. However, it is vulnerable to the high thermal stress and multipacting, so this paper presents the window design and analysis for these problems. The microwave design has been performed by using the computer simulation technology(CST) microwave studio and the return loss of the window has been established to be less than-90 d B. The multipacting simulation of the window has been carried out using MultiPac and CST particles studio. Through the multipacting analysis, it is shown that with thin coating of TiN, the multipacting effect has been suppressed effectively on the ceramic surface. The thermal analysis is carried out using ANSYS code and the temperature of alumina ceramic is lower than 310 K with water cooling.The design result successfully meets the requirement of the CEPC 650 MHz klystron. The manufacturing and high power test plan are also described in this paper.  相似文献   

8.
The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV, 16 kW, 50 mA peak current, 0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications. The CPHS linac consists of a 3 MeV radio-frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL). Both the RFQ and DTL share a 325 MHz, 2.1 MW klystron source. A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity. Three-dimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented, and the design process and results of the RLWG and iris plate are described in detail.  相似文献   

9.
The rapid cycling synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton ring with beam power of 100 kW. In order to control the residual activation to meet the requirements of hands-on maintenance, a two-stage collimation system has been designed for the RCS. The collimation system consists of one primary collimator made of thin metal to scatter the beam and four secondary collimators as absorbers. Thermal analysis is an important aspect in evaluating the reliability of the collimation system. The calculation of the temperature distribution and thermal stress of the primary collimator with different materials is carried out by using ANSYS code. In order to control the temperature rise and thermal stress of the primary collimator to a reasonable level, an air cooling structure is intended to be used. The mechanical design of the cooling structure is presented, and the cooling efficiency with different chin numbers and wind velocity is also analyzed. Finally, the fatigue lifetime of the collimator under thermal shocks is estimated.  相似文献   

10.
An RF pulse compressor is a device used to convert a long RF pulse to a short one with a much higher peak RF magnitude. SLED can be regarded as the earliest RF pulse compressor to be used in large-scale linear accelerators. It has been widely studied around the world and applied in the BEPC and BEPCⅡ linac for many years. During routine operation, error and jitter effects will deteriorate the performance of SLED, either on the output electromagnetic wave amplitude or phase. The error effects mainly include the frequency drift induced by cooling water temperature variation and the frequency/Q0/β unbalances between the two energy storage cavities caused by mechanical fabrication or microwave tuning. The jitter effects refer to the PSK switching phase and time jitters. In this paper, we re-derive the generalized formulae for the conventional SLED used in the BEPCⅡ linac, and the error and jitter effects on SLED performance are also investigated.  相似文献   

11.
An RF pulse compressor is a device used to convert a long RF pulse to a short one with a much higher peak RF magnitude. SLED can be regarded as the earliest RF pulse compressor to be used in large-scale linear accelerators. It has been widely studied around the world and applied in the BEPC and BEPC linac for many years. During routine operation, error and jitter effects will deteriorate the performance of SLED, either on the output electromagnetic wave amplitude or phase. The error effects mainly include the frequency drift induced by cooling water temperature variation and the frequency/Q 0 /β unbalances between the two energy storage cavities caused by mechanical fabrication or microwave tuning. The jitter effects refer to the PSK switching phase and time jitters. In this paper, we re-derive the generalized formulae for the conventional SLED used in the BEPC linac, and the error and jitter effects on SLED performance are also investigated.  相似文献   

12.
A resonant buildup of beam-induced fields in a superconducting radio frequency (RF) cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode (HOM) couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility) HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project (PEFP) in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.  相似文献   

13.
In a long-term planning for neutrino experiments in China, a medium baseline neutrino beam is proposed which uses a continue wave (CW) superconducting linac of 15 MW in beam power as the proton driver. The linac will be based on the technologies which are under development by the China-ADS project, namely it is also composed of a 3.2 MeV normal conducting RFQ and five different types of superconducting cavities. However, the design philosophy is quite different from the China-ADS linac because of the much weaker requirement on reliability here. The nominal design energy and current are 1.5 GeV and 10 mA, respectively. The general considerations and preliminary results on the physics design will be presented here. In addition, the alternative designs such as 2.0 GeV and 2.5 GeV, which may be required by the general design, can be easily extended from the nominal one.  相似文献   

14.
The superconducting spoke cavity has been proposed to accelerate the proton in the low energy section of high power proton linac for an Accelerator Driven Sub-critical System (ADS). Considering that the High Order Modes (HOMs) in the superconducting cavity have far reaching influence on power dissipation and beam stability, the analysis of HOMs of the spoke cavity is needed. In this paper, we put emphasis on the analysis of HOMs of the spoke cavity and the HOMs coupler design.  相似文献   

15.
In the proposal of the Beijing Advanced Light Source, a compact combination of XERL and XFEL using a common SC linac is being considered. In the meantime, an ERL-FEL test facility is being proposed and will be used for THz radiation. In this test facility, a L-band photocathode RF injector is needed. In this paper, we give the physical design of the L-band photocathode RF injector for the test facility.  相似文献   

16.
A flexible high power RF test stand has been designed and constructed at IHEP to test a variety of 500 MHz superconducting RF components for the upgrade project of the Beijing Electron Positron Collider (BEPCⅡ), such as the input coupler, the higher order modes (HOMs) absorber and so on. A high power input coupler has been conditioned and tested with the RF power up to 250 kW in continuous wave (CW), traveling wave (TW) mode and 150 kW CW in standing wave (SW) mode. A prototype of the HOMs absorber has been tested to absorb power of 4.4 kW. An introduction of the test stand design, construction and high power tests is presented in this paper.  相似文献   

17.
The travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators, and has been studied for many years. In the design process, usually after the dimensions of each cell and the two couplers are finalized, the structure is fabricated and tuned, and then the whole structure RF characteristics are measured by using a vector network analyzer. Before fabrication, the whole structure characteristics (including RF, thermal and structural ones) are less simulated due to the limited capability of currently available computers. In this paper, we described a method for performing RF-thermal-structural-RF coupled analysis on a TW disk-loaded structure using only one PC. In order to validate our method, we first analyzed and compared our RF simulation results on the 3 m long BEPCⅡ structure with the corresponding experimental results, which shows very good consistency. Finally, the RF-thermal-structure-RF coupled analysis results on the 1.35 m long NSC KIPT linac accelerating structure are presented.  相似文献   

18.
The linac to the transmuter beam transport line (LTBT) connecting the end of the linac to the spallation target is a critical sub-system in the accelerator driven system (ADS). It has the function of transporting the accel-erated high power proton beam to the target with a beam footprint satisfying the special requirements of the minor actinide (MA) transmuter. In this paper, a preliminary conceptual design of the hurling magnet to transmuter beam transport section (HTBT), as a part of the LTBT, for the China ADS (C-ADS) system is proposed and developed. In this design, a novel hurling magnet with a two dimensional amplitude modulation (AM) of 1 kHz and scanning of more than 10 kHz at 360 in transverse directions is used to realize a 300 mm diameter uniform distribution of beam on target. The preliminary beam optics design of C-ADS HTBT optimized to minimize the beam loss on the vacuum chamber and the radiation damage caused by back-scattering neutrons will be reported.  相似文献   

19.
During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.  相似文献   

20.
金冬月  张万荣  付强  陈亮  肖盈  王任卿  赵昕 《中国物理 B》2011,20(7):74401-074401
With the aid of a thermal-electrical model,a practical method for designing multi-finger power heterojunction bipolar transistors with finger lengths divided in groups is proposed.The method can effectively enhance the thermal stability of the devices without sacrificing the design time.Taking a 40-finger heterojunction bipolar transistor for example,the device with non-uniform emitter finger lengths is optimized and fabricated.Both the theoretical and the experimental results show that,for the optimum device,the peak temperature is lowered by 26.19 K and the maximum temperature difference is reduced by 56.67% when compared with the conventional heterojunction bipolar transistor with uniform emitter finger length.Furthermore,the ability to improve the uniformity of the temperature profile and to expand the thermal stable operation range is strengthened as the power level increases,which is ascribed to the improvement of the thermal resistance in the optimum device.A detailed design procedure is also summarized to provide a general guide for designing power heterojunction bipolar transistors with non-uniform finger lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号