首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
锂离子电池正极材料LiMn2O4的合成与晶体结构(英)   总被引:2,自引:0,他引:2  
Spinel LiMn2O4 powders were prepared using two-step synthesis method consisting of solid-state reaction method and citrate modified sol-gel method. The effects of the calcination temperature and the Li/Mn ratio of raw materials were studied on the physicochemical and electrochemical properties of the spinel LiMn2O4 powders, such as crystallinity, lattice constant and density. The title compound was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Polycrystalline LiMn2O4 powers calcined at 750 ℃ were found to be composed of very uniformly-sized microcrystal with an average particle size of 300 nm. The improvement in electrochemical properties was mainly attributed to the process of re-grinding by absolute alcohol.  相似文献   

2.
Li4Ti5O12溶胶-凝胶法合成及其机理研究   总被引:15,自引:0,他引:15  
The precursors of Li4Ti5O12 were prepared from tetrabutyl titanate and lithium acetate by sol-gel process. The Li4Ti5O12 samples were synthesized by calcining the gel precursors at 400~900 ℃ in air for 6~20 h. Its reaction mechanism was investigated by infrared spectroscopy(IR), thermogravimetry(TG) and X-ray diffraction(XRD). The effects of sinter-temperature, calcination-time and thermal-treatment for the products were discussed. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM). The results showed that the single-phase products were obtained by calcining the gel precursors at 800 ℃ in air for 20 h, the sinter-temperature was lower than that of solid-state method, the particles were narrowly distributed, well crystallized with a size range from 0.3μm to 0.5 μm.  相似文献   

3.
Four different hematite (α-Fe2O3) nanopowders with various morphologies have been synthesized in the presence of surfactant (HPC) via hydrothermal route at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, FeSO4 and (NH4)3Fe(C2O4)3, as precursor materials. The products were characterized by means of X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. The hysteresis measurements show that the products exhibit weak ferromagnetic property at room temperature. It is concluded that the different precursor materials and the presence of the surfactant are important factors that exert significant effects on the morphologies and magnetic properties of the products.  相似文献   

4.
Ca2-xSrxZn4Ti15O36∶Pr red long decay phosphor was synthesized by high temperature solid state reaction. Photoluminescence property and crystalline and unit cell parameters of the orthorhombic were investigated by fluorescence spectrophotometer and by powder X-ray diffraction, respectively. The emission intensity at 618 nm changes sharply when the concentration of Sr2+ (x) is less than 0.1 and the emission intensity reaches the maximum when x is equal to 0.007. There is an obviously broad excitation band at 270 nm when x is equal to 0.003 and it disappears gradually when x is over 0.01. The unit cell a parameter of Ca2-xSrxZn4Ti15O36∶Pr decreases while c parameter increases with the increases of the concentration of the doped Sr2+. When x is over 0.1 the value of the unit cell parameters a and c become stable. TL peaks of Ca2Zn4Ti15O36∶Pr, Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+, are located at 62 ℃, 88 ℃, respectively, which indicates that there are deeper traps in Ca1.993Sr0.007Zn4Ti15O36∶0.002Pr3+, 0.002Na+.  相似文献   

5.
The spherical Y2O3∶Eu3+ luminescent particles with size of 0.5~3 μm and smooth surface were synthesized by hydrothermal method. The resulted Y2O3∶Eu3+ precursors and the calcined particles were characterized by differential thermal analysis (DTA) and thermogravimetric (TG) analysis, X-ray diffraction (XRD), Fourier-transform IR spectroscopy (FTIR), scanning electron microscopy (SEM) and photoluminescence spectra (PL). FTIR, TG-DTA, XRD measurements show that the precursors are crystal with hydroxyl and carbonate group, and the pure cubic yttria is obtained after annealing above 700 ℃. The SEM images indicate that the Y2O3∶Eu3+ particles are in spherical shape and with smooth surface. PL analysis shows that the particles present characteristic red emission of Eu3+.  相似文献   

6.
MgFe2O4纳米粉体的水热合成及其表征(英)   总被引:3,自引:0,他引:3  
MgFe2O4 nanoparticles were hydrothermally synthesized at 150 ℃ using iron nitrate [Fe(NO3)3·9H2O], magnesium nitrate [Mg(NO3)2·6H2O] and sodium hydroxide (NaOH) as starting materials by carefully controlling the reaction conditions. The influences of several factors such as presence or absence of Na+, molar ratio of Fe3+ / Mg2+, concentration of mental ions, temperature and reaction time on resultant products were investigated in the hydrothermal process. The sample was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and its magnetic properties were measured using vibrating sample magnetometer (VSM).  相似文献   

7.
球形α-Fe2O3纳米粉体的超声水解法合成与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
Hematite (α-Fe2O3) nanopowder was synthesized from 0.1 mol·L-1 FeCl3 solution by sonochemical hydrolysis method, and characterized by X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transform infrared (FTIR), Fourier transform Raman (FT-Raman) and X-ray photoelectron spectroscopy (XPS). The results showed that the spherical, well-dispersed α-Fe2O3 nanopowder was obtained with the average size of 20 nm. The possible mechanism for the formation of α-Fe2O3 nanoparticals was also discussed.  相似文献   

8.
于龙  张校刚 《无机化学学报》2004,20(9):1112-1116
Vanadium oxide/titanate composites nanorods (VOx/ Titanate-CNRs) were synthesized in high yield by using titanate nanotubes as templates and V2O5·nH2O sol as the precursors under hydrothermal conditions (200 ℃, 48 h). Samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-ray (EDAX). X-ray diffraction structure determination showed that this new phase had the composition of V3O7·H2O and crystallized with orthorhombic symmetry. SEM and TEM tests showed that the samples were uniform straight rods with the diameter range from around 100 to 300 nm and the length over 10 μm. The chemical compositions of the samples were determined with EDXA. The electrochemical tests of samples (titanates nanotubes, V2O5 and VOx/ Titanate-CNRs) prove that VOx/ Titanate-CNRs exhibit a better electrochemical performance.  相似文献   

9.
La2(CO3)3 nanowires were prepared in the nonionic surfactant microemulsion(Triton X-100/cyclohexane/water)system. Transmission electron microscopy (TEM) and selected area electronic diffraction (SAED) were used to characterize the shape and size of the products. The results showed that the pH value and concentration of mother solution, temperature and aging time all could affect the morphology and size of the La2(CO3)3 nanowires. The lengths of the nanowires were more than 10 μm and the diameters were in the range of 30~200 nm.  相似文献   

10.
CuO/Sn0.8Ti0.2O2催化剂的表征及对NO+CO反应活性研究   总被引:2,自引:0,他引:2  
Reducibility and characteristics of CuO/Sn0.8Ti0.2O2 catalysts were examined by using a microreactor-GC NO+CO reaction system, BET, TG-DTA, FTIR, XRD and H2-TPR techniques. CuO/Sn0.8Ti0.2O2 had high activity in NO+CO reaction, showing 93% NO conversion at 300 ℃ in air, and 100% NO conversion at 225 ℃ after H2 pretreatment. The pore size distribution of Sn0.8Ti0.2O2 was mainly as micro-pores and meso-pores (1~5 nm), and the specific surface area and total pore volume of Sn0.8Ti0.2O2 were 69 m2·g-1 and 0.15 cm3·g-1, respectively. As shown by XRD analysis, there was no CuO crystal diffraction peak at 9%CuO loading, but two CuO crystal diffraction peaks at 2θ 35.5° and 38.7° were present at 12% CuO loading. FTIR detected the adsorption of NO and CO on the surface of reduced 12%CuO/Sn0.8Ti0.2O2. The Cu2+ sites and support surface adsorbed NO, and the process of NO adsorption led to the formation of N2O and NO3-. In contrast, the Cu+、Cu0 sites and support surface adsorbed CO, and when the mixed gases of NO and CO were adsorbed by support surface, no NO3- was formed. H2-TPR showed four reduction peaks (α, β, γ and δ). The α, β and γ peaks were the reductions of CuO species, and the δ peak was the reduction of Sn0.8Ti0.2O2.  相似文献   

11.
以Ba(NO3)2、NaBH4、Er2O3和CeO2为原料, 在十六烷基三甲基溴化铵(CTAB)表面活性剂辅助下, 采用水热法制备了β-BaB2O4 (β-BBO)纳米棒, 稀土离子Er3+单掺杂的β-BBO(β-BBO:Er3+)及Er3+和Ce3+/Ce4+共掺杂的β-BBO(β-BBO:Er3+/Ce3+/Ce4+)纳米棒. 通过X射线粉末衍射(XRD)、傅里叶变换红外(FTIR)光谱、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和光致发光(PL)光谱分别对样品的物相、结构、形貌、成分及光致发光性质进行了表征. 研究结果表明: 微量稀土离子掺杂并不改变β-BBO的结构, 制得的纳米棒尺寸均匀, 长度在200-500 nm 之间, 直径在10-20 nm 之间; β-BBO:Er3+和β-BBO:Er3+/Ce3+/Ce4+纳米棒在400nm光激发下, 在可见光范围内都观察到中心波长为515和542 nm的绿光. 对发光机理的初步研究表明: 发光分别对应于Er3+的2H11/2→4I15/2, 4S3/2→4I15/2跃迁, 铈离子以Ce3+和Ce4+两种形式存在于体系中, Ce3+对Er3+起敏化作用, 可以显著增强β-BBO:Er3+/Ce3+/Ce4+纳米棒的发光强度, 存在Ce3+→Er3+的能量传递过程.  相似文献   

12.
通过恒电势电沉积和加热处理在泡沫镍基体上制备了Co3O4纳米片. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对纳米片的形貌和结构进行了表征. 采用线性伏安扫描和计时电流技术研究了Co3O4纳米片电极对H2O2的电还原性能. 结果表明,在3.0 mol/L KOH 和 0.4 mol/L H2O2溶液中,当电压为-0.4 V(vs. Ag/AgCl)时,线性伏安扫描电流密度达到-0.386 A/cm2,在1000 s 测试时间内,计时电流密度衰减很小,表明Co3O4纳米片电极对H2O2具有很高的活性和稳定性.  相似文献   

13.
研究了用一步水热法制备的掺镧钛酸铋(Bi3.25La0.75Ti3O12, BLT)纳米线的光学和可见光催化性能, 并对其晶体结构和微观结构用X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段进行了表征. 结果表明, 制备的纳米线为纯相的Bi3.25La0.75Ti3O12, 平均直径约为25 nm. 室温光致发光谱(PL)显示BLT纳米线在433和565 nm附近有较强的发射峰, 分别对应激子发射和表面缺陷发光. 紫外-可见漫反射光谱(UV-Vis DRS)表明BLT样品的带隙能约为2.07 eV. 利用可见光(λ>420 nm)照射下的甲基橙降解实验评价了BLT样品的光催化性能. 结果表明, BLT的光催化活性比商用TiO2催化剂P25、掺氮TiO2和纯相钛酸铋(Bi4Ti3O12, BIT)高得多. BLT光催化剂具有更高催化活性的原因是La3+离子掺杂拓展了BIT对可见光的吸收范围, 同时抑制了BIT的光生电子-空穴的复合.  相似文献   

14.
溶胶凝胶法合成Li3V6O16及其电化学性能研究   总被引:2,自引:2,他引:0  
张孟雄  张友祥 《无机化学学报》2012,28(10):2065-2070
本文以双氧水为配位剂,以CH3COOLi·2H2O和V2O5为原料,采用溶胶凝胶法合成了一种新型的晶体Li3V6O16。随后分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电子衍射(SAED)、X光电子能谱(XPS)和充放电测试等手段对材料进行了表征。SEM观察表明,产物主要是表面比较光滑的纳米片状晶体,TEM和SAED研究都证实了XRD和SEM的研究结果。充放电测试结果表明,该物质具有较高的比容量、良好的可逆性和循环稳定性。  相似文献   

15.
The hexagram and arrayed β-FeOOH nanorods were first synthesized free of surfactants through the solvent-thermal method. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectrum (EDAX) and thermal gravimetric analysis (TGA) were used to characterize the as-prepared products. The TEM and FESEM images showed that hexagram β-FeOOH and arrayed rod-like β-FeOOH with an average diameter of 10-15 nm and an average length of 100 nm (aspect ratio is about 10) were prepared. Electrochemical tests show that these nanorods deliver a large discharge capacity of 277 mA h g−1 versus Li metal at 0.1 mA cm−2 (voltage at 1.5-4.2 V). Treated the as-synthesized rod-like β-FeOOH by annealing, rhombus hematite was obtained.  相似文献   

16.
采用超声法将磁基体Fe3O4和BiVO4复合,制备了易于固液分离的磁性可见光催化剂BiVO4/Fe3O4。采用X射线衍射(XRD)、傅立叶转换红外光谱(FTIR)、紫外-可见漫反射光谱(DRS)、透射电子显微镜(TEM)和磁学性质测量系统(MPMS)对产物进行了表征,并以亚甲基蓝为目标降解物,考察了BiVO4/Fe3O4的可见光催化活性。当BiVO4与Fe3O4质量比为5:1时,BiVO4/Fe3O4的催化活性最高,反应经过5 h,对亚甲基蓝的降解率达到92.0%,而单独使用BiVO4为催化剂,降解率仅为72.5%。这表明Fe3O4不仅起到磁基体的作用,还起到助催化剂的作用。BiVO4/Fe3O4在外加磁场的作用下很容易被分离,撤消外加磁场后,通过搅拌又可重新分散。BiVO4/Fe3O4 3次回收后的降解率仍高于80%。  相似文献   

17.
我们在合成海胆状Nb2O5纳米球光催化剂的基础上,向体系中直接引入Fe3+离子,制备了Fe物种修饰的Nb2O5纳米球。对产物进行了X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附测试、紫外可见吸收谱(UV-Vis)和光致发光谱(PL)表征。结果表明,引入Fe3+后,Nb2O5纳米球的微观形貌和晶型结构没有发生显著变化,但其比表面积有所增加,原位复合的Fe物种以低结晶度的Fe2O3和Fe(Ⅱ)NbxOy物种分布在Nb2O5纳米球表面。相比于单一海胆状Nb2O5,Fe物种修饰的Nb2O5催化剂表现出了良好的光催化活性,能高效且选择性地降解类吩噻嗪染料亚甲基蓝(MB)和甲苯胺蓝(TB),原因为:(1) Fe物种可以对类吩噻嗪染料分子中的N和S形成配位吸附;(2) Fe物种与Nb2O5导带匹配,可以有效分离其光生电子,提高空穴的氧化能力;(3) Fenton反应在快速消耗光生电子的同时产生大量·OH用于染料的氧化。  相似文献   

18.
通过溶剂热方法合成了ZnMn2O4微米空心球,并探讨了其形成机理。采用XRD,SEM,TEM等测试手段对产物的结构、形貌和组成进行了表征。实验结果表明,溶剂热反应条件如反应温度、反应介质对于产物的结构和形貌起着关键作用。在140℃,采用乙醇和水作为反应介质,反应6 h可以制备出直径约3μm的ZnMn2O4微米空心球;当以乙醇为溶剂,反应6 h可以得到团聚的尺寸约250 nm的ZnMn2O4纳米颗粒。将所制备的ZnMn2O4微米空心球/纳米颗粒组装成锂扣式模拟电池,考察其电化学脱嵌锂性能。电化学测试结果显示,与ZnMn2O4纳米颗粒相比,空心结构的ZnMn2O4微米球具有较高的初始放电容量(1335 mAh·g-1)和较好的倍率性能,有望作为锂离子电池的新型负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号