首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

2.

In this paper, we investigate the quantile varying coefficient model for longitudinal data, where the unknown nonparametric functions are approximated by polynomial splines and the estimators are obtained by minimizing the quadratic inference function. The theoretical properties of the resulting estimators are established, and they achieve the optimal convergence rate for the nonparametric functions. Since the objective function is non-smooth, an estimation procedure is proposed that uses induced smoothing and we prove that the smoothed estimator is asymptotically equivalent to the original estimator. Moreover, we propose a variable selection procedure based on the regularization method, which can simultaneously estimate and select important nonparametric components and has the asymptotic oracle property. Extensive simulations and a real data analysis show the usefulness of the proposed method.

  相似文献   

3.
受实际问题研究的启发, 为减少模型偏差, 提出了一类半相依部分线性可加的半参数回归模型. 这类半相依模型中, 响应变量与 一部分解释变量之间的关系是线性的, 与另一部分解释变量之间的关系未知但具有可加结构, 各方程的误差之间是相关的. 将级 数逼近法、最小二乘法和同期相关的估计结合起来, 提出了用于估计模型参数分量的加权半参数最小二乘估计量(WSLSEs), 和用于估 计模型非参数分量的加权级数逼近估计量(WSEs). 证明了这些加权的估计量比相应的不加权的估计量渐近有效, 并导出了相应的渐近正态性. 另外, 还讨论了利用这些估计量的渐近性质来对模型的参数及非参数分量作统计推断. 用大量的模拟实验考察 了所提出的方法在有限样本情况下的表现, 并对美国的一个关于妇女工资问题的全国纵向调查(NLS)数据集进行了统计分析.  相似文献   

4.
纵向数据下广义估计方程估计   总被引:1,自引:0,他引:1  
广义估计方程方法是一种最一般的参数估计方法,广泛地应用于生物统计、经济计量、医疗保险等领域.在纵向数据下,由于组间数据是相关的,为了提高估计的效率,广义估计方程方法一般需要考虑个体组内相关性.因此,大多数文献对个体组内的协方差矩阵进行参数假设,但假设的合理性及协方差矩阵估计的好坏对参数估计效率产生很大影响,同时参数假设也可能导致模型误判.针对纵向数据下广义估计方程,本文提出了改进的GMM方法和经验似然方法,并对给出的估计量建立了大样本性质.其中分块的思想,避免了对个体组内相关性结构进行假设,从这种意义上说,这种方法具有一定的稳健性.我们还通过两个模拟的例子,考察了文中提出估计量的有限样本性质.  相似文献   

5.
It is well known that specifying a covariance matrix is difficult in the quantile regression with longitudinal data. This paper develops a two step estimation procedure to improve estimation efficiency based on the modified Cholesky decomposition. Specifically, in the first step, we obtain the initial estimators of regression coefficients by ignoring the possible correlations between repeated measures. Then, we apply the modified Cholesky decomposition to construct the covariance models and obtain the estimator of within-subject covariance matrix. In the second step, we construct unbiased estimating functions to obtain more efficient estimators of regression coefficients. However, the proposed estimating functions are discrete and non-convex. We utilize the induced smoothing method to achieve the fast and accurate estimates of parameters and their asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distributions for the resulting estimators. Simulation studies and the longitudinal progesterone data analysis show that the proposed approach yields highly efficient estimators.  相似文献   

6.

This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and asymptotic distribution results for the single-index parameter estimators. Under a log-Gamma model, the sensitivity to anomalous observations is studied using the empirical influence curve. We also discuss a robust K-fold cross-validation procedure to select the smoothing parameters. A numerical study carried on with errors following a log-Gamma model and for contaminated schemes shows the good robustness properties of the proposed estimators and the advantages of considering a robust approach instead of the classical one. A real data set illustrates the use of our proposal.

  相似文献   

7.

Variable selection for multivariate nonparametric regression models usually involves parameterized approximation for nonparametric functions in the objective function. However, this parameterized approximation often increases the number of parameters significantly, leading to the “curse of dimensionality” and inaccurate estimation. In this paper, we propose a novel and easily implemented approach to do variable selection in nonparametric models without parameterized approximation, enabling selection consistency to be achieved. The proposed method is applied to do variable selection for additive models. A two-stage procedure with selection and adaptive estimation is proposed, and the properties of this method are investigated. This two-stage algorithm is adaptive to the smoothness of the underlying components, and the estimation consistency can reach a parametric rate if the underlying model is really parametric. Simulation studies are conducted to examine the performance of the proposed method. Furthermore, a real data example is analyzed for illustration.

  相似文献   

8.
对于纵向数据下半参数回归模型,基于广义估计方程和一般权函数方法构造了模型中参数分量和非参数分量的估计.在适当的条件下证明了参数估计量具有渐近正态性,并得到了非参数回归函数估计量的最优收敛速度.通过模拟研究说明了所提出的估计量在有限样本下的精确性.  相似文献   

9.
In this paper, we develop robust estimation for the mean and covariance jointly for the regression model of longitudinal data within the framework of generalized estimating equations (GEE). The proposed approach integrates the robust method and joint mean–covariance regression modeling. Robust generalized estimating equations using bounded scores and leverage-based weights are employed for the mean and covariance to achieve robustness against outliers. The resulting estimators are shown to be consistent and asymptotically normally distributed. Simulation studies are conducted to investigate the effectiveness of the proposed method. As expected, the robust method outperforms its non-robust version under contaminations. Finally, we illustrate by analyzing a hormone data set. By downweighing the potential outliers, the proposed method not only shifts the estimation in the mean model, but also shrinks the range of the innovation variance, leading to a more reliable estimation in the covariance matrix.  相似文献   

10.
Semiparametric linear transformation models have received much attention due to their high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) [21] for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem of variable selection for linear transformation models has been less studied, partially because a convenient loss function is not readily available under this context. In this paper, we propose a simple yet powerful approach to achieve both sparse and consistent estimation for linear transformation models. The main idea is to derive a profiled score from the estimating equation of Chen et al. [21], construct a loss function based on the profile scored and its variance, and then minimize the loss subject to some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is consistent for both model estimation and variable selection. Furthermore, the estimated parametric terms are asymptotically normal and can achieve a higher efficiency than that yielded from the estimation equations. For computation, we suggest a one-step approximation algorithm which can take advantage of the LARS and build the entire solution path efficiently. Performance of the new procedure is illustrated through numerous simulations and real examples including one microarray data.  相似文献   

11.
Robust Depth-Weighted Wavelet for Nonparametric Regression Models   总被引:2,自引:0,他引:2  
In the nonparametric regression models, the original regression estimators including kernel estimator, Fourier series estimator and wavelet estimator are always constructed by the weighted sum of data, and the weights depend only on the distance between the design points and estimation points. As a result these estimators are not robust to the perturbations in data. In order to avoid this problem, a new nonparametric regression model, called the depth-weighted regression model, is introduced and then the depth-weighted wavelet estimation is defined. The new estimation is robust to the perturbations in data, which attains very high breakdown value close to 1/2. On the other hand, some asymptotic behaviours such as asymptotic normality are obtained. Some simulations illustrate that the proposed wavelet estimator is more robust than the original wavelet estimator and, as a price to pay for the robustness, the new method is slightly less efficient than the original method.  相似文献   

12.
吕晶  郭朝会  杨虎  李婷婷 《数学学报》2018,61(4):549-568
本文基于修正的Cholesky分解提出新的方法估计纵向秩回归的组内协方差矩阵,进而提出新的无偏估计函数改善不平衡纵向数据的估计效率.在一些正则条件下,建立了所提估计的渐近正态性.进一步,提出稳健的秩得分检验统计量对回归系数做假设检验.模拟研究和实证分析表明所提方法能够获得高度有效的估计以及所提检验方法比存在的方法更好.  相似文献   

13.
The semilinear in-slide models (SLIMs) have been shown to be effective methods for normalizing microarray data [J. Fan, P. Tam, G. Vande Woude, Y. Ren, Normalization and analysis of cDNA micro-arrays using within-array replications applied to neuroblastoma cell response to a cytokine, Proceedings of the National Academy of Science (2004) 1135-1140]. Using a backfitting method, [J. Fan, H. Peng, T. Huang, Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency, Journal of American Statistical Association, 471, (2005) 781-798] proposed a profile least squares (PLS) estimation for the parametric and nonparametric components. The general asymptotic properties for their estimator is not developed. In this paper, we consider a new approach, two-stage estimation, which enables us to establish the asymptotic normalities for both of the parametric and nonparametric component estimators. We further propose a plug-in bandwidth selector using the asymptotic normality of the nonparametric component estimator. The proposed method allow for the modeling of the aggregated SLIMs case where we can explicitly show that taking the aggregated information into account can improve both of the parametric and nonparametric component estimator by the proposed two-stage approach. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedures.  相似文献   

14.
This paper reports a robust kernel estimation for fixed design nonparametric regression models. A Stahel-Donoho kernel estimation is introduced, in which the weight functions depend on both the depths of data and the distances between the design points and the estimation points. Based on a local approximation, a computational technique is given to approximate to the incomputable depths of the errors. As a result the new estimator is computationally efficient. The proposed estimator attains a high breakdown point and has perfect asymptotic behaviors such as the asymptotic normality and convergence in the mean squared error. Unlike the depth-weighted estimator for parametric regression models, this depth-weighted nonparametric estimator has a simple variance structure and then we can compare its efficiency with the original one. Some simulations show that the new method can smooth the regression estimation and achieve some desirable balances between robustness and efficiency.  相似文献   

15.
In this paper, we investigate the estimation of semi-varying coefficient models when the nonlinear covariates are prone to measurement error. With the help of validation sampling, we propose two estimators of the parameter and the coefficient functions by combining dimension reduction and the profile likelihood methods without any error structure equation specification or error distribution assumption. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the proposed estimators achieves the best convergence rate. Data-driven bandwidth selection methods are also discussed. Simulations are conducted to evaluate the finite sample property of the estimation methods proposed.  相似文献   

16.
Based on the double penalized estimation method,a new variable selection procedure is proposed for partially linear models with longitudinal data.The proposed procedure can avoid the effects of the nonparametric estimator on the variable selection for the parameters components.Under some regularity conditions,the rate of convergence and asymptotic normality of the resulting estimators are established.In addition,to improve efficiency for regression coefficients,the estimation of the working covariance matrix is involved in the proposed iterative algorithm.Some simulation studies are carried out to demonstrate that the proposed method performs well.  相似文献   

17.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

18.
该文主要考虑部分线性变系数模型在自变量含有测量误差以及因变量存在缺失情形下的估计问题.基于Profile最小二乘技术,针对参数分量和非参数分量提出了多种估计方法.第一种估计方法只利用了完整观测数据,而第二种和第三种估计方法分别利用了插补技术和替代技术.参数分量的所有估计被证明是渐近正态的,非参数分量的所有估计被证明和一般非参数回归函数的估计具有相同的收敛速度.对于因变量的均值,构造了两类估计并证明了它们的渐近正态性.最后,通过数值模拟验证了所提方法.  相似文献   

19.
We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different from all existing covariate-adjusted methods in the literature. Asymptotic properties of the proposed estimators are established. Moreover, we also study variable selection by adopting the coordinate-independent sparse estimation to select all relevant but distorted covariates in the parametric part. We show that the resulting sparse estimators can exclude all irrelevant covariates with probability approaching one. A simulation study is conducted to evaluate the performance of the proposed methods and a real data set is analyzed for illustration.  相似文献   

20.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号