首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吕晶  郭朝会  杨虎  李婷婷 《数学学报》2018,61(4):549-568
本文基于修正的Cholesky分解提出新的方法估计纵向秩回归的组内协方差矩阵,进而提出新的无偏估计函数改善不平衡纵向数据的估计效率.在一些正则条件下,建立了所提估计的渐近正态性.进一步,提出稳健的秩得分检验统计量对回归系数做假设检验.模拟研究和实证分析表明所提方法能够获得高度有效的估计以及所提检验方法比存在的方法更好.  相似文献   

2.

Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In this paper, we focus on longitudinal single-index models. Firstly, we apply the modified Cholesky decomposition to parameterize the intra-subject covariance matrix and develop a regression approach to estimate the parameters of the covariance matrix. Secondly, we propose efficient quantile estimating equations for the index coefficients and the link function based on the estimated covariance matrix. Since the proposed estimating equations include a discrete indicator function, we propose smoothed estimating equations for fast and accurate computation of the index coefficients, as well as their asymptotic covariances. Thirdly, we establish the asymptotic properties of the proposed estimators. Finally, simulation studies and a real data analysis have illustrated the efficiency of the proposed approach.

  相似文献   

3.
Modeling the mean and covariance simultaneously is a common strategy to efciently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data.In this article,using generalized estimation equation techniques,we propose a new kind of regression models for parameterizing covariance structures.Using a novel Cholesky factor,the entries in this decomposition have moving average and log innovation interpretation and are modeled as linear functions of covariates.The resulting estimators for the regression coefcients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed.Simulation studies and a real data analysis show that the proposed approach yields highly efcient estimators for the parameters in the mean,and provides parsimonious estimation for the covariance structure.  相似文献   

4.
In this article, we develop efficient robust method for estimation of mean and covariance simultaneously for longitudinal data in regression model. Based on Cholesky decomposition for the covariance matrix and rewriting the regression model, we propose a weighted least square estimator, in which the weights are estimated under generalized empirical likelihood framework. The proposed estimator obtains high efficiency from the close connection to empirical likelihood method, and achieves robustness by bounding the weighted sum of squared residuals. Simulation study shows that, compared to existing robust estimation methods for longitudinal data, the proposed estimator has relatively high efficiency and comparable robustness. In the end, the proposed method is used to analyse a real data set.  相似文献   

5.
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized es...  相似文献   

6.
In this paper, we develop robust estimation for the mean and covariance jointly for the regression model of longitudinal data within the framework of generalized estimating equations (GEE). The proposed approach integrates the robust method and joint mean–covariance regression modeling. Robust generalized estimating equations using bounded scores and leverage-based weights are employed for the mean and covariance to achieve robustness against outliers. The resulting estimators are shown to be consistent and asymptotically normally distributed. Simulation studies are conducted to investigate the effectiveness of the proposed method. As expected, the robust method outperforms its non-robust version under contaminations. Finally, we illustrate by analyzing a hormone data set. By downweighing the potential outliers, the proposed method not only shifts the estimation in the mean model, but also shrinks the range of the innovation variance, leading to a more reliable estimation in the covariance matrix.  相似文献   

7.
??In the last few decades, longitudinal data was deeply research in statistics science and widely used in many field, such as finance, medical science, agriculture and so on. The characteristic of longitudinal data is that the values are independent from different samples but they are correlate from one sample. Many nonparametric estimation methods were applied into longitudinal data models with development of computer technology. Using Cholesky decomposition and Profile least squares estimation, we will propose a effective spline estimation method pointing at nonparametric model of longitudinal data with covariance matrix unknown in this paper. Finally, we point that the new proposed method is more superior than Naive spline estimation in the covariance matrix is unknown case by comparing the simulated results of one example.  相似文献   

8.
In this paper, we study the problem of estimating a multivariate normal covariance matrix with staircase pattern data. Two kinds of parameterizations in terms of the covariance matrix are used. One is Cholesky decomposition and another is Bartlett decomposition. Based on Cholesky decomposition of the covariance matrix, the closed form of the maximum likelihood estimator (MLE) of the covariance matrix is given. Using Bayesian method, we prove that the best equivariant estimator of the covariance matrix with respect to the special group related to Cholesky decomposition uniquely exists under the Stein loss. Consequently, the MLE of the covariance matrix is inadmissible under the Stein loss. Our method can also be applied to other invariant loss functions like the entropy loss and the symmetric loss. In addition, based on Bartlett decomposition of the covariance matrix, the Jeffreys prior and the reference prior of the covariance matrix with staircase pattern data are also obtained. Our reference prior is different from Berger and Yang’s reference prior. Interestingly, the Jeffreys prior with staircase pattern data is the same as that with complete data. The posterior properties are also investigated. Some simulation results are given for illustration.  相似文献   

9.
This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.  相似文献   

10.
The problem of estimating the precision matrix of a multivariate normal distribution model is considered with respect to a quadratic loss function. A number of covariance estimators originally intended for a variety of loss functions are adapted so as to obtain alternative estimators of the precision matrix. It is shown that the alternative estimators have analytically smaller risks than the unbiased estimator of the precision matrix. Through numerical studies of risk values, it is shown that the new estimators have substantial reduction in risk. In addition, we consider the problem of the estimation of discriminant coefficients, which arises in linear discriminant analysis when Fisher's linear discriminant function is viewed as the posterior log-odds under the assumption that two classes differ in mean but have a common covariance matrix. The above method is also adapted for this problem in order to obtain improved estimators of the discriminant coefficients under the quadratic loss function. Furthermore, a numerical study is undertaken to compare the properties of a collection of alternatives to the “unbiased” estimator of the discriminant coefficients.  相似文献   

11.
对于纵向数据边际模型的均值函数, 有很多非参数估计方法, 其中回归样条, 光滑样条, 似乎不相关(SUR)核估计等方法在工作协方差阵正确指定时具有最小的渐近方差. 回归样条的渐近偏差与工作协方差阵无关, 而SUR核估计和光滑样条估计的渐近偏差却依赖于工作协方差阵. 本文主要研究了回归样条, 光滑样条和SUR核估计的效率问题. 通过模拟比较发现回归样条估计的表现比较稳定, 在大多数情况下比光滑样条估计和SUR核估计的效率高.  相似文献   

12.
具有特殊协方差结构的 SURE 模型中参数估计的若干结果   总被引:1,自引:0,他引:1  
本文讨论具有特殊协方差结构似乎不相关回归方程(SURE)模型中参数的估计问题.除非另有说明,损失函数将取为二次损失和矩阵损失.本文证明了回归系数的线性可估函数的最小二乘估计是极小极大的且在矩阵损失函数下是可容许的;还分别在仿射交换群和平移群下导出了存在回归系数的线性可估函数的一致最小风险同变(UMRE)估计的充要条件,并证明了在仿射交换和二次损失下不存在协方差阵和方差的UMRE估计.  相似文献   

13.
We investigate the problem of estimating the Cholesky decomposition in a conditional independent normal model with missing data. Explicit expressions for the maximum likelihood estimators and unbiased estimators are derived. By introducing a special group, we obtain the best equivariant estimators.  相似文献   

14.
In this paper, we study the problem of estimating the covariance matrix Σ and the precision matrix Ω (the inverse of the covariance matrix) in a star-shape model with missing data. By considering a type of Cholesky decomposition of the precision matrix Ω=ΨΨ, where Ψ is a lower triangular matrix with positive diagonal elements, we get the MLEs of the covariance matrix and precision matrix and prove that both of them are biased. Based on the MLEs, unbiased estimators of the covariance matrix and precision matrix are obtained. A special group G, which is a subgroup of the group consisting all lower triangular matrices, is introduced. By choosing the left invariant Haar measure on G as a prior, we obtain the closed forms of the best equivariant estimates of Ω under any of the Stein loss, the entropy loss, and the symmetric loss. Consequently, the MLE of the precision matrix (covariance matrix) is inadmissible under any of the above three loss functions. Some simulation results are given for illustration.  相似文献   

15.
许凯  何道江 《数学学报》2016,59(6):783-794
在缺失数据机制是可忽略的假设下,导出了有单调缺失数据的条件独立正态模型中协方差阵和精度阵的Cholesky分解的最大似然估计和无偏估计.通过引入一类特殊的变换群并在更广义的损失下,获得了其最优同变估计.这表明最大似然估计和无偏估计是非容许的.最后,通过数值模拟验证了相关结果的有效性.  相似文献   

16.
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators.  相似文献   

17.
This paper develops the empirical likelihood (EL) inference on parameters and baseline function in a semiparametric nonlinear regression model for longitudinal data in the presence of missing response variables. We propose two EL-based ratio statistics for regression coefficients by introducing the working covariance matrix and a residual-adjusted EL ratio statistic for baseline function. We establish asymptotic properties of the EL estimators for regression coefficients and baseline function. Simulation studies are used to investigate the finite sample performance of our proposed EL methodologies. An AIDS clinical trial data set is used to illustrate our proposed methodologies.  相似文献   

18.
A multivariate ultrastructural measurement error model is considered and it is assumed that some prior information is available in the form of exact linear restrictions on regression coefficients. Using the prior information along with the additional knowledge of covariance matrix of measurement errors associated with explanatory vector and reliability matrix, we have proposed three methodologies to construct the consistent estimators which also satisfy the given linear restrictions. Asymptotic distribution of these estimators is derived when measurement errors and random error component are not necessarily normally distributed. Dominance conditions for the superiority of one estimator over the other under the criterion of Löwner ordering are obtained for each case of the additional information. Some conditions are also proposed under which the use of a particular type of information will give a more efficient estimator.  相似文献   

19.
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consist of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior that proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Materials available online.  相似文献   

20.
Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies, and often more than one type of recurrent events is of interest. In this paper, we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covariates on the censored event processes of interest. An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions. We examine asymptotic properties of the proposed estimators. Finite sample properties of these estimators are demonstrated by simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号