首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分散液液微萃取-气相色谱法测定水样中甲拌磷农药   总被引:1,自引:1,他引:0  
建立了基于分散液液微萃取(DLLME)的新型样品前处理方法,并采用气相色谱/氢火焰离子化检测器对水样中痕量的甲拌磷农药进行了测定。考察了影响分散液液微萃取的因素包括萃取溶剂、分散剂、样品体积、萃取温度和离心速度等。在最佳实验条件下,对甲拌磷的富集倍数达到300倍;检出限为0.001μL/L;方法的线性范围为0.01~10μL/L,R2为0.9986;相对标准偏差为6.65%;回收率为104%。将分散液液微萃取法与单滴液相微萃取和离子液体-液相微萃取方法进行了对比,结果表明,分散液液微萃取技术具有操作简单、快捷(前处理时间小于5 min)、富集效果好、回收率高等优点。同时预言,将离子液体与分散液液微萃取结合,将会产生更加满意的结果。  相似文献   

2.
孙建芝  贺晖  刘书慧 《色谱》2014,32(3):256-262
建立了分散液液微萃取(DLLME)-反相液液微萃取(RP-LLME)-扫集-胶束电动色谱富集模型,并用于红酒中五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)3种氯酚的测定。实验考察了两步微萃取的萃取参数对氯酚萃取率的影响和样品分离富集的电泳条件。最佳萃取条件DLLME为:3.5 mL红酒(pH 3.0,120 g/L NaCl),300 μL正己烷(萃取剂);RP-LLME为:25 μL 0.16 mol/L NaOH(萃取剂)。最佳电泳条件:25 mmol/L NaH2PO4,100 mmol/L十二烷基硫酸钠(SDS),30%(v/v)乙腈,pH 2.3;分离电压-15 kV;样品基质为80 mmol/L NaH2PO4;压力进样20 s×20.67 kPa(3 psi)。PCP和TCP的线性范围为0.5~100 μg/L(r≥0.9910),DCP的线性范围为1.5~80 μg/L(r=0.9851)。3种分析物的检出限(S/N=3)为0.035~0.114 μg/L,加标回收率为75.2%~104.7%,相对标准偏差≤6.17%。该方法富集倍数高、灵敏度高、重现性好、分析速度快,可为不同样品基质中痕量氯酚污染物及某些弱酸性有机污染物测定提供参考。  相似文献   

3.
叶曦雯  何静  李莹  牛增元  张甜甜  罗忻  邹立  连素梅 《色谱》2020,38(2):255-263
建立了液液萃取-分散液液微萃取-气相色谱-质谱联用技术测定纺织废水中痕量偶氮染料的方法。废水中的偶氮染料在碱性条件下经连二亚硫酸钠还原成芳香胺后,先用叔丁基甲醚液液萃取、盐酸反萃进行预浓缩及净化;再以乙腈-氯苯体系进行分散液液微萃取,气相色谱-质谱测定。对前处理条件进行了优化,考察了酸碱度及盐效应对芳香胺萃取效率的影响,结果表明:液液萃取过程中加入30 g NaCl,分散液液微萃取过程中加入1 mL 5 mol/L的NaOH调节体系至碱性才能达到较好的萃取效率。在优化的实验条件下,21种目标物均呈现良好的线性关系,其中13种芳香胺的线性范围为0.05~10 μg/L,7种芳香胺的线性范围为0.05~5 μg/L,2,4-二氨基苯甲醚的线性范围为20~100 μg/L,相关系数为0.996~0.999。20种芳香胺的检出限可达0.05 μg/L,2,4-二氨基苯甲醚检出限为20 μg/L。印染、机织、印花等实际废水加标试验表明,方法的回收率为75.6%~115.1%。该方法富集倍数高,检出限低,适用于纺织废水中痕量禁用偶氮染料的检测。  相似文献   

4.
建立了液-液-液微萃取/高效液相色谱联用(LLLME/HPLC)测定环境水中痕量酚类化合物2-甲基苯酚、2-硝基苯酚、2,4-二氯苯酚的分析方法,研究了有机相溶剂种类及其体积、料液相pH值与离子强度、接受相的体积、组成及浓度和搅拌速率、萃取时间等因素对分析物萃取效率的影响。实验结果表明,该方法对酚类化合物的富集倍数可达到404~747倍,方法的线性范围为0.2~300μg/L,RSD(n=6)为6.8%~11.4%。测定加标自来水、江水以及生活污水样品的回收率为83%~110%。  相似文献   

5.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在0.01~5.0mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

6.
建立了超声辅助萃取(UAE)-分散液液微萃取(DLLME)/气相色谱法测定环境水样中六氯苯、林丹和硫丹,并对影响萃取和富集效率的因素进行了优化。在最优条件下,六氯苯、林丹及α-硫丹的线性范围为1.0~1 000μg/L,检出限分别为0.47、0.39及0.63μg/L;β-硫丹线性范围为5.0~1 000μg/L,检出限为2.44μg/L;相对标准偏差(RSDs)为8.3%~11.7%(n=7)。用该方法对环境水样中的六氯苯、林丹及硫丹进行了分析,自来水、灌溉水、湖水样的平加标回收率分别为94.2%~100.4%、89.4%~99.4%和69.6%~96.3%。  相似文献   

7.
建立了水样中7种萘二酚的涡旋辅助分散液液微萃取-悬浮固化/高效液相色谱(VA-DLLMESFO/HPLC)测定方法。以乙醚-十二醇为二元微萃取剂,通过涡旋分散方式协同萃取水样中的目标化合物,采用C18色谱柱分离,HPLC测定。优化了萃取剂及用量、萃取时间、氯化钠用量等条件。最佳萃取条件为:萃取剂为100μL乙醚和50μL十二醇,氯化钠用量为0.2 g/m L,涡旋萃取3 min。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均大于0.997,方法检出限(S/N=3)为1.7~6.0μg/L;3个加标水平下的平均回收率为82.1%~106.0%,日内相对标准偏差(RSD,n=5)为1.2%~4.1%;中间添加水平的日间RSD(n=5)为2.5%~5.7%。该方法前处理简单,涡旋分散大大提高了物质传质速率,增大了萃取效率,缩短了萃取时间,是一种适用于水样中萘二酚类物质富集检测的绿色方法。  相似文献   

8.
于玲  胡章记  董丽丽 《分析测试学报》2015,34(12):1354-1359
建立了滤膜吸附结合超声辅助分散液液微萃取与高效液相色谱(HPLC)联用测定空气中溴氰菊酯残留的方法。空气样品用甲醇-水(1∶4)混合溶液提取,加入三氯甲烷进行微萃取,超声,离心,得到沉积相,进行HPLC分析。溴氰菊酯在5~1 000μg/L范围内线性关系良好,相关系数(r)为0.999 8,富集倍数达520倍。当空气样品的加标浓度为10,50,100μg/L时,加标回收率为78.6%~106.7%,相对标准偏差(RSD)为2.2%~4.3%。空气样品中溴氰菊酯的检出限为1μg/L,最低检出浓度为0.04μg/m~3。该方法具有简便快捷、准确灵敏、萃取效率高、有机溶剂消耗少等优点,可用于空气中溴氰菊酯残留的测定。  相似文献   

9.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50 μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在 0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在 0.01~5.0 mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5 μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

10.
建立了简便、快速、有效的分散液液微萃取-高效液相色谱法测定环境水样中2,4-二氯酚的分析方法。对萃取剂、分散剂的种类和体积、萃取时间、离心时间、盐浓度等影响萃取效率的因素进行了优化。方法的线性范围为1~500μg/L(r=0.9997),相对标准偏差(RSD)为3.8%(n=6),检出限为0.19μg/L。该法适用于环境水样中的痕量2,4-二氯酚的检测。  相似文献   

11.
研究了凝固-漂浮分散液液微萃取(SFO-DLLME)-分光光度法测定水样中痕量亚硝酸根的方法。以1-十二醇为萃取剂,乙醇为分散剂进行分散液液微萃取,离心后通过冷冻凝固操作使漂浮的萃取剂和水相分离。最佳实验条件下,方法的线性范围为2.0-280μg/L(r=0.999 9),检出限为0.34μg/L。方法已成功应用于环境水样分析,相对标准偏差在2.4%-3.3%,加标回收率在98.2%-102.4%。  相似文献   

12.
建立了QuEChERS-温控离子液体分散液液微萃取结合高效液相色谱法快速检测脐橙中5种染色剂残留的分析方法。QuEChERS前处理步骤:样品用乙腈快速提取,NaCl和无水MgSO4除水后,经N-丙基乙二胺净化。温控离子液体分散液液微萃取步骤:QuEChERS前处理的净化液(1 mL)为分散剂,1-辛基-3-甲基咪唑六氟磷酸盐离子液体(60μL)为萃取剂,55℃水浴12 min,将目标物富集。用高效液相色谱-紫外检测器分析,检出样品用超高效液相色谱-串联质谱确证。在0.01和0.05 mg/kg的添加水平下,5种染色剂的平均回收率为70.3%~93.6%,相对标准偏差为3.5%~9.2%,定量限为1.1~2.8μg/kg。  相似文献   

13.
提出了微波辅助衍生-离子液体分散液液微萃取-高效液相色谱法测定发酵酒和饮料中的甲醛。以2,4-二硝基苯肼为衍生试剂,1-辛基-3-甲基咪唑六氟磷酸盐为提取剂,乙腈为分散剂,样品溶液在300 W的微波功率下辐照60s后离心,甲醛衍生物被萃取到离子液体中,用乙腈定容。以SB-C18色谱柱为分离柱,以水-甲醇(2+8)溶液为流动相进行洗脱,检测波长355nm。甲醛的质量浓度在1.00~100μg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)为0.16μg·L-1,测定下限(10S/N)为0.53μg·L-1。对啤酒、葡萄酒、可乐和橙汁4个样品进行加标回收试验,回收率在92.5%~99.1%之间,测定值的相对标准偏差(n=5)在2.6%~7.8%之间。  相似文献   

14.
建立了以分散液液微萃取技术作为分离富集手段,以测汞仪分析水产品中的甲基汞的方法。以测汞仪直接测定样品中总汞,并用差减法计算出无机汞的含量。实验优化了分散液相微萃取的条件。实验表明,以二氯甲烷为萃取剂,乙醇为分散剂,二者体积比为1:5,HCl浓度为1 mol/L,NaCl浓度为120 g/L时,可以得到较为理想的结果。本方法的动态线性范围为0.2~20μg/L,检出限为0.10μg/L,相对标准偏差6.0%,富集倍数为8。仪器测定总汞的检出限为0.1 μg/kg,线性范围0.2~50μg/kg,相对标准偏差2.4%。本方法简单、快速,溶剂消耗量少。以标准参考物质验证本方法的准确性,其测定结果与标准值吻合较好。将本方法应用于实际水产制品的分析,得到较满意的结果。  相似文献   

15.
建立了沉积物中痕量十溴联苯醚的分散液液微萃取-上浮溶剂固化-高效液相色谱-紫外法(DLLME-SFO-HPLC-UV)。以正交试验数据为训练样本,采用BP(Back propagation)神经网络模型优化了分散液液微萃取-上浮溶剂固化条件:分散剂为1.00mL甲醇、萃取剂为35.0μL十二醇、NaCl质量浓度为10.00%、萃取时间10min和pH=5,其萃取率(ER)可达62.22%。方法的线性范围为3.5~1400ng/g(r=0.9960),检出限(LOD)和定量限(LOQ)分别为2.3pg/g(S/N=2)和5.6pg/g(S/N=5),实际样品的加标回收率为97.7%~104.2%。本方法集萃取、富集、分离步骤于一体,简化了沉积物中十溴联苯醚的前处理过程。  相似文献   

16.
建立了分散液液微萃取-气相色谱电子捕获检测器测定水中15种硝基苯类物质的方法.筛选出了具有高密度且能够适用于电子捕获检测器的萃取剂.优化了色谱条件,对萃取剂种类及用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化.DB-35毛细管柱对15种硝基苯类物质具有最好的分离效果.使用程序升温,初始80℃ 保持2 min,以5℃/min速率升温至180℃,可以在22 min内完成分离.以100μL氯苯作为萃取剂、400μL甲醇作为分散剂,对5.00 mL水样在室温下进行萃取,仅需30 s即可达到萃取平衡,15种目标物的萃取率均可达到90%以上,富集倍数达到45.0~48.8.离心分离,取下层沉积相进行气相色谱测定,使用电子捕获检测器检测,方法的定量限为0.03~0.15μg/L,线性范围为0.20~50.0μg/L,相关系数不低于0.998.方法的相对标准偏差在3.3%~8.9%之间,加标回收率在86.0%~103.5%之间.  相似文献   

17.
采用分散固相萃取和分散液液微萃取联用的方法,建立了高效液相色谱快速检测西瓜中氟唑菌酰羟胺残留的分析方法。使用乙腈和水混合溶液作为萃取溶剂,经N-丙基-乙二胺硅烷(PSA)固相萃取吸附剂净化提取液,分散液液微萃取将目标物富集到1,1,2,2-四氯乙烷溶剂中,采用高效液相色谱进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐浓度等因素对分散液液微萃取萃取效率的影响。结果表明:分析物的质量浓度在0.01~5 mg/L范围内与峰面积的线性关系良好,相关系数(r)为0.999 9,定量下限(S/N=10)为0.01 mg/kg。加标水平为0.01、0.1、1 mg/kg时,平均回收率为89.2%~94.5%,相对标准偏差(n=5)为3.0%~8.7%。该方法简单、高效、灵敏度高,适用于西瓜中氟唑菌酰羟胺的残留检测。  相似文献   

18.
采用凝固-漂浮分散液液微萃取(SFO-DLLME)-高效液相色谱法测定水样中3种氯酚.以密度小于水,且凝固点为24 ℃的1-十二醇为萃取剂,甲醇为分散剂,对水样进行分散液液微萃取.将混合液离心,再通过冷冻凝固操作使漂浮的萃取剂和水相分离,萃取剂复溶后进样测定.本实验确定的最佳实验条件为:萃取剂200 μL、分散剂300 μL、1.2 g NaCl、1 mol/L H3PO4 200 μL、样品体积8.0 mL、萃取时间3 min.3种氯酚测定的线性范围为0.05~6.0 mg/L;检出限为20~38 μg/L.应用本方法分析实际水样,加标回收率在90.11%~107.7%之间;日间相对标准偏差在3.5%~4.6%之间.本方法扩展了分散液液微萃取萃取剂的选择范围,具有简便、快速、准确、环境友好等特点.  相似文献   

19.
该文采用基于饱和中链脂肪酸的凝固-漂浮分散液液微萃取(SFO-DLLME)/高效液相色谱技术,建立了环境水样中4种紫外屏蔽剂的分析方法。以凝固点较高且密度小于水的饱和中链脂肪酸—辛酸为萃取剂,通过调节溶液pH值改变辛酸的存在形态,高pH值时辛酸以阴离子形式分散于溶液中完成萃取,低pH值时依靠其中性分子的强疏水作用实现油水分离,从而完成对环境水样中4种分析物的萃取。经单因素实验条件优化和响应曲面分析法计算,确定最佳萃取条件:萃取剂体积为100 μL,氨水体积为100 μL,浓硫酸体积为1.2 mL。在优化条件下,4种紫外屏蔽剂的线性范围为0.01~10.0 mg/L,检出限为0.18~0.76 μg/L,富集倍数为42~49。在3个加标浓度下的回收率为73.8%~103%,日内及日间相对标准偏差为1.9%~9.6%。该方法具有简便、快速、环境友好等特点,进一步拓宽了分散液液微萃取技术的应用范围。  相似文献   

20.
何东 《分析测试学报》2016,35(7):844-848
建立了测定环境水样中7种萘二酚的离子液体分散液液微萃取/高效液相色谱(IL-DLLME-HPLC)分析方法。以1-丁基-3-甲基咪唑六氟磷酸盐([C4MIM][PF6])为萃取剂,水样体积为8.0 m L,研究了萃取剂用量、水相p H值、萃取时间及盐添加量对7种萘二酚萃取效率的影响。获得最佳萃取条件为:[C4MIM][PF6]体积为150μL,水相p H值为5.0~7.0,涡旋萃取时间为3 min,氯化钠添加量为0.20 g/m L。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均不小于0.997 7;方法富集倍数为57倍,方法检出限(S/N=3)为0.3~1.0μg/L;阴性环境水样中3个加标水平的平均回收率为83.5%~103%,相对标准偏差(n=6)为1.1%~3.8%。该方法快速简单、准确灵敏、环保,适用于环境水样中痕量萘二酚的富集检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号