首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our investigation, lead germanium telluride, which is a pseudo-binary alloy of IV-VI narrow-gap semiconductor compounds of Pb Te and Ge Te, can be used in the fabrication of mid-wavelength infrared narrow bandpass filters as a high-index coating material, due to its high refractive index, lower absorption, and tunability of fundamental absorption edges. It is demonstrated that a half-width of 160 nm and a better rejection ratio can be obtained for a simple 8-layer double cavity filter with a central wavelength at 4 μm, compared with a half-width of 390 nm for those conveniently fabricated using Ge as high-index material.  相似文献   

2.
A highly tunable optical nanoantenna element is proposed through gradual transformation from a sphere to a prolate spheroid. This new element induces field enhancement and an increase in resonance frequency. Rather than a purely metallic material, we propose the use of a metal-coated dielectric spheroid as a nanoelement because of its flexibility. We show that a spheroidal element enhances the near-field better than its rod and sphere counterparts. As such, spheroidal elements are good candidates for improving solar-cell performance.  相似文献   

3.
胡启昌  陈业青  吕佩文  黄丰  王娴 《中国物理 B》2014,23(2):26402-026402
Bismuth-containing semiconductor material is a hot topic in photocatalysts because of its effective absorption under the visible light.In this paper,we expect to explore a new bismuth-based photocatalyst by studying the subsolidus phase relations of the Bi2O3–Fe2O3–La2O3system.The X-ray diffraction data shows that in this ternary system the ternary compound does not exist,while seven binary compounds(including one solid solution series Bi1 xLaxO1.5with 0.167≤x≤0.339)are obtained and eight compatibility triangles are determined.  相似文献   

4.
Bismuth-containing semiconductor material is a hot topic in photocatalysts because of its effective absorption under the visible light. In this paper, we expect to explore a new bismuth-based photocatalyst by studying the subsolidus phase relations of the Bi2O3-Fe2O3-La2O3 system. The X-ray diffraction data shows that in this ternary system the ternary compound does not exist, while seven binary compounds (including one solid solution series Bi1-xLaxO1.5 with 0.167 〈 x 〈 0.339) are obtained and eight compatibility triangles are determined.  相似文献   

5.
We study strain distribution inside and outside an arbitrarily-shaped quantum dot (QD) buried in an infinite isotropic medium. By defining a very simple vector, we derive a compact formula for stress fields expressed by an integral over the interface between the QD and its surrounding material. Using this method, the analytical solution for a cuboidal QD is obtained, which is different from the previous result. It is shown that our solution satisfies the traction continuity condition on the interface. Based on this solution, it is found that the strain field in the cuboidal QD in the semiconductor heterostructure is sensitive to its height. In addition, the strain distribution around a hemispherical QD is also calculated and demonstrated.  相似文献   

6.
<正>W is considered a potential candidate as a plasma facing material for future nuclear fusion devices because of its high melting point,low sputtering rate,and low H or He solubility[1-3].In a fusion environment,W will be in direct contact with heat flux,H/He particle fluxes,and the irradiation of high-energy neutrons,causing several defects to be generated,which decrease the service life of W materials.The  相似文献   

7.
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10~4 S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1~05 and a mobility of 3 × 10~(-2 )cm~2·V~(-1)·s~(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.  相似文献   

8.
By combing artificial micro–nano structures, photonic crystals(PCs), with traditional semiconductor laser material to realize the dynamic collaborative control of photonic states and confined electrons, the band engineering of the PC has been confirmed. This brings new development space for the semiconductor laser, such as for low threshold and high efficiency.Based on a series of works by Zheng's group, this paper has reviewed kinds of PC lasers including electrical injection PC vertical cavity and lateral cavity surface-emitting lasers, and PC high beam quality lasers, to show that the PC is vital for promoting the continuous improvement of semiconductor laser performance at present and in the future.  相似文献   

9.
Ultrathin optical interference in a system composed of absorbing material and metal reflector has attracted extensive attention due to its potential application in realizing highly efficient optical absorption by using extremely thin semiconductor material. In this paper, we study the physics behind the high absorption of ultrathin film from the viewpoint of destructive interference and admittance matching, particularly addressing the phase evolution by light propagation and interface reflection. The physical manipulations of the ultrathin interference effect by controlling the substrate material and semiconductor material/thickness are examined. We introduce typical two-dimensional materials — i.e., MoS_2 and WSe_2— as the absorbing layer with thickness below 10 nm, which exhibits ~ 90% absorption in a large range of incident angle(0°~70°). According to the ultrathin interference mechanism, we propose the ultrathin( 20 nm) MoS_2/WSe_2 heterojunction for photovoltaic application and carefully examine the detailed optoelectronic responses by coupled multiphysics simulation. By comparing the same cells on SiO_2 substrate, both the short-circuit current density(up to 20 mA/cm~2) and the photoelectric conversion efficiency(up to 9.5%) are found to be increased by ~200%.  相似文献   

10.
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.  相似文献   

11.
In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (I~HM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schrodinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.  相似文献   

12.
In wavelength division multiplexing (WDM) systems, an arrayed waveguide grating (AWG) multiplexer is a key component. A polymeric AWG multiplexer has recently attracted much attention due to its low cost processing and a potential of integration with other devices. Fluorinated poly (ether ether ketone) (FPEEK) is excellent material for fabrication of optical waveguides due to its low absorption loss at 1.55-μm wavelength and high thermal stability. A 32-channel AWG multiplexer has been designed based on the grating diffraction theory and fabricated using newly synthesized FPEEK. During the fabrication process of the Polymer/Si AWG device, spin coating, vaporizing, photolithographic patterning and reactive ion etching (RIE) are used. The AWG multiplexer measurement system is based on a tunable semiconductor laser, infrared camera and a Peltier-type heater. The device exhibits a wavelength channel spacing of 0.8 nm and a center wavelength of 1548 nm in the room temperature.  相似文献   

13.
This letter proposes a scheme for the format conversion of on-off keying (OOK) signal to quadrature phase-shift keying (QPSK) and 16-ary quadrature amplitude modulation (16QAM) signals via cross-phase modulation (XPM) in a semiconductor optical amplifier (SOA). Theoretical and experimental analyses of the format conversion scheme are conducted to validate its feasibility. The phase changing is obtained because of the XPM in the SOA. The QPSK and 16QAM signals are converted from the OOK signal. The performance of the 10 Gb/s format conversion system is evaluated and discussed. The receiver sensitivities of the converted QPSK and 16QAM signals after detection are -27.25 and -23.5 dBm, respectively, at a bit error rate (BER) of 109 .  相似文献   

14.
Materials with large optical nonlinearities have receivedincreased attention in the past years because they arecrucial for the development of components for all-opticalsignal processing, and have many potential applicationsin electro-optic and integrated optical devices, nonlinearoptical switching devices and real-time coherent opticalsignal processors[1-3]. ZnO, as a representatively wideband gap semiconductor, triggers research interestingon optical nonlinear-response in recent years, owning…  相似文献   

15.
朱腾飞  谭炳辉  潘雪丰  陶卫东 《中国物理 B》2010,19(1):14218-014218
2D and 3D submicron periodic structures are first fabricated by red-induced photopolymerization using a common 635 nm semiconductor laser and specially developed red-sensitive polymer material. The principle of this new photo-polymer material fabrication is explained and the absorption spectra of the material are measured. This fabrication technique allows a deeper penetration into volume and larger interference irradiation area which is more than 1 cm2. The optical design, theoretical calculations and experimental results including diffraction patterns verifying the formation of periodic structures are presented. Compared with other fabrication technologies using high-power lasers, this approach has greatly reduced the demand for laser apparatus. Therefore, it is much more accessible to most laboratories and potentially usable in holographic fabrication of photonic crystals and devices in micro electro-mechanical systems (MEMS).  相似文献   

16.
An analytical method based on four-wave mixing (FWM) is here developed to study the generation of entangled state in an asymmetric semiconductor double quantum well structure. It is found that the maximally entangled state of two beams (the probe and four-wave mixing beams) can be achieved in an appropriate condition. Moreover, we also show that the two entangled beams propagate with ultraslow group velocity in the semiconductor medium. This investigation can be used for achieving the entangled beams in the semiconductor solid-state medium, which is much more practical than that in an atomic medium because of its flexible design and the wide adjustable parameters.  相似文献   

17.
This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate(K0.5Na0.5Nb O3;KNN) using a novel melting method.The effects of the subsequent heat-treatment on the optical,thermal,electrical,and mechanical properties of the material are carefully examined,and its crystal structure and surface morphology are characterized respectively by x-ray diffraction and scanning electron microscopy.This new material has a much higher piezoelectric coefficient(163 p C·N-1) than traditional piezoelectric ceramics(131 p C·N-1).On this basis therefore,a strategy for the future study and development of lead-free KNN-based piezoelectric glass ceramics is proposed.  相似文献   

18.
N Yadav  S Ghosh  P S Malviya 《中国物理 B》2017,26(1):15203-015203
We report nonlinear parametric interactions using a hydrodynamic model of ion-implanted semiconductor plasmas having strain-dependent dielectric constants(SDDC). High-dielectric-constant materials are technologically important because of their nonlinear properties. We find that the third-order susceptibility varies in the range 10~(-14)~(–10)~(-12)m~2·V~(-2) for ion-implanted semiconductor plasmas, which is in good agreement with previous results. It is found that the presence of SDDC in ion-implanted semiconductor plasma modifies the characteristic properties of the material.  相似文献   

19.
Nitrogen doping of silver oxide(AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity.In this work,a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios(FRs) of nitrogen to O2.Evolutions of the structure,the reflectivity,and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry,respectively.The specular transmissivity and the specular reflectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film.The nitrogen does not play the role of an acceptor dopant in the film deposition.  相似文献   

20.
A hypothesis is brought forward that the materials with low propagation loss in both optical and microwave band may exhibit good performance in terahertz (THz) band because THz wave band interspaces those two wave bands. For the purpose-of exploring a kind of low-loss material for THz waveguide, Lu2.1Bi0.9Fe5O12(LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on a gadolinium gallium garnet (GGG) substrate from lead-free flux because of the good properties in both optical and microwave bands. In microwave band, the ferromagnetic resonance (FMR) linewidth of the film 2△H = 2.8-5.1Oe; in optical band, the optical absorption coefficient is 600cm^-1 at visible range and about 100-170cm^-1 when the wavelength is longer than 800nm. In THz range, our hypothesis is well confirmed by a THz-TDS measurement which shows that the absorbance of the film for THz wave is 0.05-0.3 cm 1 and the minimum value appears at 2.3 THz. This artificial ferromagnetic material holds a great promise for magnetic field tunable THz devices such as waveguide, modulator or switch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号