首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   18篇
物理学   21篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2010年   9篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
This paper theoretically studies the effects of the vacuum-induced coherence on one- and two-photon absorption in a four-level atomic medium. It finds that the one- and two-photon absorption and amplification properties are quite sensitive to the vacuum-induced coherence. It is also shown that the one- and two-photon absorption spectra can be dramatically affected by modulating the relative phase of the applied fields. With the proper choice of the relative phase, the amplification without inversion for the probe field can be realized.  相似文献   
2.
We investigate the sudden birth and sudden death of entanglement of two qubits interacting with uncorrelated structured reservoirs. The system is initially prepared in two-qubit extended Werner-like state. We work out the dependence of the entanglement dynamics on both non-Markovian environments and the purity of initial state, and show that non-Markovian environments and the purity can control the time of the two-qubit entanglement sudden death and the reservoirs' entanglement sudden birth. Furthermore, under the conditions of different purity and initial entangIement, the revival of qubits' entanglement can manifest before, simultaneously or even after the disentanglement of their corresponding reservoirs.  相似文献   
3.
刘继兵 《物理学报》2008,57(1):38-42
In this paper, we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field. Both the field nonlinearity and the atom--field coupling nonlinearity are considered. We find that the geometric phase depends on whether the index $k$ is an odd number or an even number in the resonant case. In addition, we also find that the geometric phase may be easily observed when the field nonlinearity is not considered. The fractional statistical phenomenon appears in this system if the strong nonlinear atom--field coupling is considered. We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.  相似文献   
4.
刘堂昆  张康隆  陶宇  单传家  刘继兵 《中国物理 B》2016,25(7):70304-070304
The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.  相似文献   
5.
We theoreticMly investigate the response of the probe amplification in a five-level atomlc system m the presence of interacting double-dark resonances disturbed by introducing an additional signal field. It is found that a large enhancement of the probe amplification with or without population inversion can be achieved by properly adjusting the strengths of the microwave driving field and the signal laser field. From viewpoint of physics, we qualitatively explain these results in terms of quantum interference and dressed states.  相似文献   
6.
We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e〉 and |g〉 ) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.  相似文献   
7.
In this paper, we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field. Both the field nonlinearity and the atom-field coupling nonlinearity are considered. We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case. In addition, we also find that the geometric phase may be easily observed when the field nonlinearity is not considered. The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered. We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.  相似文献   
8.
刘堂昆  单传家  刘继兵  范洪义 《中国物理 B》2010,19(9):90307-090307
By analysing the properties of two-mode quadratures in an entangled state representation (ESR) we derive from ESR some complicated exponential quadrature operators for nonlinear two-mode squeezing, which directly leads to wave function of the nonlinear squeezed state in ESR.  相似文献   
9.
Taking the decoherence effect into account, the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of inhomogeneous magnetic field is investigated. The time evolution of concurrence is studied for the initial state cos θ|01) + sin θ|10) at zero temperature. The influences of inhomogeneous magnetic field, anisotropic parameter and decoherence on entanglement dynamic are addressed in detail, and a concurrence formula of the steady state is found. It is shown that the entanglement sudden death (ESD) and entanglement sudden birth (ESB) appear with the decoherence effect, and the stable concurrence depends on the uniform magnetic field B, anisotropic parameter △ and environment coupling strength γ, which is independent of different initial states and nonuniform magnetic field b.  相似文献   
10.
An analytical method based on four-wave mixing (FWM) is here developed to study the generation of entangled state in an asymmetric semiconductor double quantum well structure. It is found that the maximally entangled state of two beams (the probe and four-wave mixing beams) can be achieved in an appropriate condition. Moreover, we also show that the two entangled beams propagate with ultraslow group velocity in the semiconductor medium. This investigation can be used for achieving the entangled beams in the semiconductor solid-state medium, which is much more practical than that in an atomic medium because of its flexible design and the wide adjustable parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号