首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5267篇
  免费   1390篇
  国内免费   3507篇
化学   6323篇
晶体学   425篇
力学   118篇
综合类   117篇
数学   203篇
物理学   2978篇
  2024年   38篇
  2023年   177篇
  2022年   190篇
  2021年   219篇
  2020年   191篇
  2019年   185篇
  2018年   134篇
  2017年   190篇
  2016年   207篇
  2015年   249篇
  2014年   405篇
  2013年   427篇
  2012年   382篇
  2011年   395篇
  2010年   355篇
  2009年   428篇
  2008年   437篇
  2007年   393篇
  2006年   403篇
  2005年   420篇
  2004年   469篇
  2003年   441篇
  2002年   376篇
  2001年   324篇
  2000年   270篇
  1999年   267篇
  1998年   214篇
  1997年   286篇
  1996年   244篇
  1995年   267篇
  1994年   220篇
  1993年   187篇
  1992年   187篇
  1991年   166篇
  1990年   152篇
  1989年   136篇
  1988年   40篇
  1987年   35篇
  1986年   20篇
  1985年   15篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
二维材料MXene纳米片由于具有较大的比表面积和较高的电子迁移率而受到广泛的关注。本文采用基于密度泛函理论的第一性原理计算,对单层MXene纳米片Ti2N电磁特性的过渡金属(Sc、V、Zr)掺杂效应进行了系统研究。结果表明,所有过渡金属掺杂体系结合能均为负值,结构均稳定;其中Ti2N-Sc体系的形成能为-2.242 eV,结构更易形成,且保持稳定;掺杂后Ti2N-Sc、Ti2N-Zr体系磁矩增大;此外,Ti2N-Sc体系中保留了较高的自旋极化率,达到84.9%,可预测该体系在自旋电子学中具有潜在的应用价值。  相似文献   
2.
本文设计了一种梯形的周期极化掺镁铌酸锂(PPMgLN)波导,并通过在传播方向上引入温度梯度来拓宽其倍频(SHG)过程的泵浦光源可接收带宽。通过有限差分的光束传输法,计算波导的有效折射率,并进行波导尺寸的设计。结果表明,通过改变梯形波导不同位置的温度,使其形成一个温度梯度,可拓宽泵浦光源的波长可接收带宽。本文所设计的PPMgLN波导最大泵浦光源可接收带宽为C波段,即1 530~1 565 nm,该波导可倍频C波段,得到输出波段带宽为765~782.5 nm,温度调谐范围为30~150 ℃。  相似文献   
3.
童健  马亮 《物理学报》2022,(6):395-404
有机分子铁电材料相较于传统无机铁电材料具有轻质、柔性、不含重金属原子和成本低等诸多优点,长期以来得到了广泛的关注和研究.近年来,原子厚度的二维无机铁电材料的研究取得了突破性进展,因而备受关注,然而二维有机铁电材料的设计与研究却鲜有报道.本文基于密度泛函理论方法设计了一种以环丁烯-1,2-二羧酸(cyclobutene-1,2-dicarboxylic acid, CBDC)分子为结构单元的二维单层有机铁电分子晶体.由于CBDC分子晶体内部氢键的链状排布,导致其块体呈现出明显的层状结构,计算发现内部的氢键链使得CBDC分子晶体块体具有各向异性的剥离能,因此有望由沿着剥离能最低的(102)晶面进行机械/化学剥离而获得相应的单层有机铁电分子晶体.理论计算预测CBDC (102)分子晶体单层的面内自发极化约0.39×10–6μC/cm,可与部分无机同类相比拟.计算表明CBDC (102)分子晶体单层具有较高的极化反转势垒,且对外加单轴应力的响应较为敏感. CBDC (102)单层有机铁电分子晶体的高面内自发极化以及易被界面调控的极化反转势垒使其可被应用于轻质无金属及柔性铁电器件.  相似文献   
4.
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.  相似文献   
5.
以“定值”的视角分析了函数具有对称性和周期性时所具备的特点,发现对称性和周期性的表达式在结构上高度相似.通过分析抽象函数的对称性和周期性的表达式,最后将对称性和周期性进行结合,阐述了双对称性与周期性的关系.通过揭示知识间的联系,帮助学生更好地掌握知识间的联系,促进学生的深度学习,亦为教师设计探究型作业提供一定的参考.  相似文献   
6.
采用酸浸、磁选酸浸、水淬/研磨酸浸等不同工艺对冷冻法硝酸磷肥生产工艺中的废渣-酸不溶物进行了提纯处理,利用X射线荧光光谱仪(XRF测试)对酸不溶物提纯前后各成分含量的变化进行了分析,从中得出了不同工艺流程对酸不溶物纯度的影响,最终确定了最佳的酸不溶物处理工艺.结果表明:在酸浸实验中,盐酸酸浸效果最佳,可将酸不溶物中SiO2纯度达到82.43;;在酸浸工艺前加入磁选、水淬、研磨的工序均可有效提升酸不溶物的提纯效果;冷冻法硝酸磷肥工艺中酸不溶物最佳的提纯工艺路线为:干燥、筛分、水洗、磁选、研磨、盐酸酸浸,处理后酸不溶物中SiO2纯度达到88.92;,符合微硅粉的生产要求.  相似文献   
7.
在碳酸钾、碳酸锂和二氧化钛的混合原料中加入熔盐氯化钾,通过高温煅烧一步制备出钛酸锂钾片晶( K0.8 Li0.27Ti1.73O4, KLTO).通过控制熔盐的添加方式以及煅烧工艺(升温速率、煅烧时间)使材料的形貌朝着二维方向生长,并利用XRD和SEM等手段进行表征.分析发现:过快的升温速率或者较短的煅烧时间都会使材料朝三维方向生长成球状或者块状,反之则会使材料趋向一维方向生长成棒状;同时在煅烧温度达到一定值时再加入熔盐则更有利于片晶的生成.最终得到KLTO片状形貌的最佳控制工艺为:先以300 ℃/h升温至800 ℃后,再加入质量分数为40;的KCl熔盐,接着将升温速率变为200 ℃/h,加热至950 ℃,并在此温度下煅烧3 h.  相似文献   
8.
超导太赫兹天线耦合微测辐射热检测器具备探测频段宽、响应速度快、灵敏度高、易于阵列化等特点因而具备广阔的应用前景.本文的主要工作是设计并微纳加工出基于氮化铌薄膜的超导器件,针对所制备器件的关键参数进行了表征.测试结果显示,当浴冷温度为4K 时,器件响应时间为4μs,噪声等效功率达到30fW/Hz0.5.基于所制备的器件进行了陶瓷刀被动扫描成像实验并取得了良好的成像效果  相似文献   
9.
利用基于密度泛函理论的第一性原理,研究了Cu:Fe:Mg:LiNbO3晶体及对比组的电子结构和光学特性.研究显示,单掺铜或铁铌酸锂晶体的杂质能级分别由Cu 3d轨道或Fe 3d轨道贡献,禁带宽度分别为3.45和3.42 eV;铜、铁共掺铌酸锂晶体杂质能级由Cu和Fe的3d轨道共同贡献,禁带宽度为3.24 eV,吸收峰分别在3.01,2.53和1.36 eV处;Cu:Fe:Mg:LiNbO3晶体中Mg^2+浓度低于阈值或高于阈值(阈值约为6.0 mol%)的禁带宽度分别为2.89 eV或3.30 eV,吸收峰分别位于2.45 eV,1.89 eV或2.89 eV,2.59 eV,2.24 eV.Mg^2+浓度高于阈值,会使吸收边较低于阈值情况红移;并使得部分Fe^3+占Nb位,引起晶体场改变,从而改变吸收峰位置和强度.双光存储应用中可选取2.9 eV作为擦除光,2.5 eV作为读取和写入光,选取Mg^2+浓度达到阈值的三掺晶体在增加动态范围和灵敏度等参量以及优化再现图像的质量等方面更具优势.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号