首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   154篇
  国内免费   183篇
化学   1116篇
晶体学   29篇
力学   7篇
综合类   7篇
物理学   183篇
  2023年   9篇
  2022年   15篇
  2021年   31篇
  2020年   44篇
  2019年   34篇
  2018年   20篇
  2017年   32篇
  2016年   60篇
  2015年   53篇
  2014年   66篇
  2013年   108篇
  2012年   67篇
  2011年   61篇
  2010年   46篇
  2009年   62篇
  2008年   55篇
  2007年   53篇
  2006年   79篇
  2005年   74篇
  2004年   86篇
  2003年   52篇
  2002年   22篇
  2001年   18篇
  2000年   13篇
  1999年   20篇
  1998年   18篇
  1997年   30篇
  1996年   20篇
  1995年   21篇
  1994年   16篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有1342条查询结果,搜索用时 46 毫秒
41.
In‐depth understanding of the catalytic active sites is of paramount importance for the design of efficient electrocatalysts for CO2 conversion. Here we highlight the structural evolution of SnO2 nanosheets for electrocatalytic CO2 reduction. The transformation of SnO2 into metallic Sn would occur on the surface of catalyst during the catalytic process, followed by enhanced selectivity and activity for the conversion of CO2 to HCOOH. Electrocatalytic characterization and structural analysis demonstrate that the metallic Sn derived from structural evolution plays a dominant role in the CO2 reduction to HCOOH. This work deepens the understanding of the catalytic mechanism and provides a new pathway for the rational design of advanced electrocatalysts for CO2 reduction.  相似文献   
42.
Transparent TiO2 nanotube arrays of micrometer lengths were prepared by anodization of titanium thin film RF sputtered on indium tin oxide (ITO) which was coated on glass substrate. The sputtering process took place at elevated temperature of 500 °C. The structures of the films were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD) while the optical properties of the films were investigated using UV-visible spectroscopy. Two types of electrolytes were used in this work: an aqueous mixture of acetic acid and HF solution and a mixture of NH4F and water dissolved in ethylene glycol. The concentration of NH4F, voltage and the thickness of the sputtered titanium film were varied to study their effect on the formation of TiO2 nanotube arrays. It is demonstrated in this work that the nanoporous layer is formed on top of the ordered array of TiO2 nanotubes. Furthermore, the optical transmittance of TiO2 nanotubes annealed at 450 °C is much lower than the non annealed TiO2 nanotubes in the visible wavelength region.  相似文献   
43.
Sn-doped TiO_2 nanoparticles with high surface area of 125.7 m~2·g~(-1) are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispersive X-ray spectroscopy and transmission electron microscopy.It is found that the conductivity has been greatly improved by the addition of 30 mol%Sn and Pt nanoparticles are well dispersed on Ti_(0.7)Sn_(0.3)O_2 support with an average size of 2.44 run.Electrochemical studies show that the Ti_(0.7)Sn_(0.3)O_2 nanoparticles have excellent electrochemical stability under a high potential compared to Vulcan XC-72.The as-synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 exhibits high and stable electrocatalytic activity for the oxygen reduction reaction.The Pt/Ti_(0.7)Sn_(0.3)O_2 catalyst reserves most of its electrochemically active surface area(ECA),and its half wave potential difference is 11 mV,which is lower than that of Pt/XC-72(36 mV) under 10 h potential hold at 1.4 V vs.NHE.In addition,the ECA degradation of Pt/Ti_(0.7)Sn_(0.3)O_2is 1.9 times lower than commercial Pt/XC-72 under 500 potential cycles between 0.6 V and 1.2 V vs.NHE.Therefore,the as synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 can be considered as a promising alternative cathode,catalyst for proton exchange membrane fuel cells.  相似文献   
44.
We present the isolation of the first mononuclear dihalogermylene, and mono‐ and dinuclear stannylene complexes of transition metals. These exhibit exceptionally pyramidalized Group 14 centers. Additionally, removal of the halide substituents from the Ge/Sn atom was successfully performed in two ways, halide abstraction and reduction, leading to a variety of unusual structural motifs.  相似文献   
45.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   
46.
Three organotin–oxido clusters were formed by hydrolysis of ferrocenyl‐functionalized organotin chloride precursors in the presence of NaEPh (E=S, Se). [RFcSnCl3?HCl] ( C ; RFc = CMe2CH2C(Me)?N?N?C(Me)Fc) and [SnCl6]2? formed {(RFcSnCl2)3[Sn(OH)6]}[SnCl3] ( 3 a ) and {(RFcSnCl2)3[Sn(OH)6]}[PhSeO3] ( 3 b ), bearing an unprecedented [Sn4O6] unit, in a one‐pot synthesis or stepwise through [(RFcSnCl2)2Se] ( 1 ) plus [(RFcSnCl2)SePh] ( 2 ). A one‐pot reaction starting out from FcSnCl3 gave [(FcSn)9(OH)6O8Cl5] ( 4 ), which represents the largest Fc‐decorated Sn/O cluster reported to date.  相似文献   
47.
To gain more insight into the reactivity of intermetalloid clusters, the reactivity of the Zintl phase K12Sn17, which contains [Sn4]4? and [Sn9]4? cluster anions, was investigated. The reaction of K12Sn17 with gold(I) phosphine chloride yielded K7[(η2‐Sn4)Au(η2‐Sn4)](NH3)16 ( 1 ) and K17[(η2‐Sn4)Au(η2‐Sn4)]2(NH2)3(NH3)52 ( 2 ), which both contain the anion [(Sn4)Au(Sn4)]7? ( 1 a ) that consists of two [Sn4]4? tetrahedra linked through a central gold atom. Anion 1 a represents the first binary Au?Sn polyanion. From this reaction, the solvate structure [K([2.2.2]crypt)]3K[Sn9](NH3)18 ( 3 ; [2.2.2]crypt=4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) was also obtained. In the analogous reaction of mesitylcopper with K12Sn17 in the presence of [18]crown‐6 in liquid ammonia, crystals of the composition [K([18]crown‐6)]2[K([18]crown‐6)(MesH)(NH3)][Cu@Sn9](thf) ( 4 ) were isolated ([18]crown‐6=1,4,7,10,13,16‐hexaoxacyclooctadiene, MesH=mesitylene, thf=tetrahydrofuran) and featured a [Cu@Sn9]3? cluster. A similar reaction with [2.2.2]crypt as a sequestering agent led to the formation of crystals of [K[2.2.2]crypt][MesCuMes] ( 5 ). The cocrystallization of mesitylene in 4 and the presence of [MesCuMes]? ( 5 a ) in 5 provides strong evidence that the migration of a bare Cu atom into an Sn9 anion takes place through the release of a Mes? anion from mesitylcopper, which either migrates to another mesitylcopper to form 5 a or is subsequently protonated to give MesH.  相似文献   
48.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   
49.
A series of organic–inorganic hybrid coatings consisting of organic waterborne polyurethane (WPU) and inorganic nanosized bismuth-doped tin dioxide were successfully synthesized by the in situ polymerization approach. Bi0.1Sn0.9O2 nano-powders were prepared via a new route of sol–gel combustion hybrid method using acetylene black as the fuel. The formed nano-powders were characterized by transmission electron microscopy and X-ray diffraction (XRD). Bi0.1Sn0.9O2–WPU was then fabricated with isophorone diisocyanate, 2,2-bis(hydroxymethyl) propionic acid and nano-Bi0.1Sn0.9O2-poly(ε-caprolactone) (PCL) as the starting materials. Organic–inorganic hybrid coatings are always achieved with adjustable contents of Bi0.1Sn0.9O2. The hybrid coatings with Bi0.1Sn0.9O2 loading on the glass substrate exhibited good heat insulation efficiency. The tensile strength and breaking extensibility of nanocomposite film containing 1.0% of the nano-Bi0.1Sn0.9O2 were measured as 9.35 MPa and 248%, respectively. The transmittance of visible light was above 80%. The heat insulation of glass coated with nano-Bi0.1Sn0.9O2–WPU hybrid was over 60 °C in contrast to the commercial blank glass.  相似文献   
50.
The silicon–tin chemical bond has been investigated by a study of the SiSn diatomic molecule and a number of new polyatomic SixSny molecules. These species, formed in the vapor produced from silicon–tin mixtures at high temperature, were experimentally studied by using a Knudsen effusion mass spectrometric technique. The heteronuclear diatomic SiSn, together with the triatomic Si2Sn and SiSn2 and tetratomic Si3Sn, Si2Sn2, and SiSn3 species, were identified in the vapor and studied in the overall temperature range 1474–1944 K. The atomization energy of all the above molecules was determined for the first time (values in kJ mol?1): 233.0±7.8 (SiSn), 625.6±11.6 (Si2Sn), 550.2±10.7 (SiSn2), 1046.1±19.9 (Si3Sn), 955.2±26.8 (Si2Sn2), and 860.2±19.0 (SiSn3). In addition, a computational study of the ground and low‐lying excited electronic states of the newly identified molecules has been made. These electronic‐structure calculations were performed at the DFT‐B3LYP/cc‐pVTZ and CCSD(T)/cc‐pVTZ levels, and allowed the estimation of reliable molecular parameters and hence the thermal functions of the species under study. Computed atomization energies were also derived by taking into account spin–orbit corrections and extrapolation to the complete basis‐set limit. A comparison between experimental and theoretical results is presented. Revised values of (716.5±16) kJ mol?1 (Si3) and (440±20) kJ mol?1 (Sn3) are also proposed for the atomization energies of the Si3 and Sn3 molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号