首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   154篇
  国内免费   183篇
化学   1114篇
晶体学   29篇
力学   7篇
综合类   7篇
物理学   183篇
  2023年   9篇
  2022年   15篇
  2021年   31篇
  2020年   44篇
  2019年   34篇
  2018年   20篇
  2017年   32篇
  2016年   60篇
  2015年   53篇
  2014年   66篇
  2013年   108篇
  2012年   67篇
  2011年   61篇
  2010年   46篇
  2009年   62篇
  2008年   55篇
  2007年   53篇
  2006年   79篇
  2005年   74篇
  2004年   86篇
  2003年   50篇
  2002年   22篇
  2001年   18篇
  2000年   13篇
  1999年   20篇
  1998年   18篇
  1997年   30篇
  1996年   20篇
  1995年   21篇
  1994年   16篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有1340条查询结果,搜索用时 17 毫秒
31.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   
32.
Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}2? 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}? 9 , in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by 119Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.  相似文献   
33.
34.
The novel amino(imino)stannylene 1 was prepared by conversion of HNIPr (NIPr=bis(2,6‐diisopropylphenyl)imidazolin‐2‐imino) with one equivalent of Lappert’s tin reagent (Sn[N(SiMe3)2]2). Treatment of 1 with DMAP (4‐dimethylaminopyridine) yields its Lewis acid–base adduct 2 . The reaction of 1 with one equivalent of trimethylsilyl azide results in replacement of the amino group at the tin center by an N3 substituent with concomitant elimination of N(SiMe3)3 to afford dimeric [N3SnNIPr]2 ( 3 ). Remarkably, the reaction of 1 with B(C6F5)3 produces the novel tin(II) monocation 4 +[MeB(C6F5)3]? comprising a four‐membered stannacycle through methyl‐abstraction from the trimethylsilyl group.  相似文献   
35.
Pd@SnO2 and SnO2@Pd core@shell nanocomposites are prepared via a microemulsion approach. Both nanocomposites exhibit high‐surface, porous matrices of SnO2 shells (>150 m2 g?1) with very small SnO2 crystallites (<10 nm) and palladium (Pd) nanoparticles (<10 nm) that are uniformly distributed in the porous SnO2 matrix. Although similar by first sight, Pd@SnO2 and SnO2@Pd are significantly different in view of their structure with Pd inside or outside the SnO2 shell and in view of their sensor performance. As SMOX‐based sensors (SMOX: semiconducting metal oxide), both nanocomposites show a very good sensor performance for the detection of CO and H2. Especially, the Pd@SnO2 core@shell nanocomposite is unique and shows a fast response time (τ90 < 30 s) and a very good response at low temperature (<250 °C), especially under humid‐air conditions. Extraordinarily high sensor signals are observed when exposing the Pd@SnO2 nanocomposite to CO in humid air. Under these conditions, even commercial sensors (Figaro TGS 2442, Applied Sensor MLC, E2V MICS 5521) are outperformed.  相似文献   
36.
An efficient method for the allylation of chiral acylhydrazones derived from aldehydes has been developed to give the corresponding allylic hydrazides in good yields and diastereoselectivities. The method uses a combination of tin powder and allylic bromide as allylation system, which avoids the use of toxic allylic stannanes while retaining their merits.  相似文献   
37.
A headspace solid‐phase micro‐extraction (HS‐SPME) method was employed in order to study the effect of storage conditions of human urine samples spiked with tributyltin (TBT) using gas chromatography and mass spectrometry. To render the analyte more volatile, the derivatization (ethylation) was made in situ by sodium tetraethylborate (NaBEt4), which was added directly to dilute unpreserved urine samples and in buffers of similar acidity. The stability of TBT in human urine matrix was compared with the stability of TBT in buffer solutions of similar pH value. Critical parameters of storage conditions such as temperature and time, which affect the stability of TBT in this kind of matrix, were examined extensively. The tests showed that the stability of TBT remains practically satisfactory for a maximum of 2 days of storage either at +4 or 20°C. Greater variations were observed in the concentration of TBT in human urine samples at +4°C and lower ones at ?20°C over a month's storage. The freeze–thaw cycles have negative effect on the stability and should be kept to a minimum. The results from spiked urine samples are also discussed in comparison to those acquired from buffer solutions of equal TBT concentration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
39.
Tin oxide (SnO2) nanotubes with a fiber‐in‐tube structure have been prepared by electrospinning and the mechanism of their formation has been investigated. Tin oxide‐carbon composite nanofibers with a filled structure were formed as an intermediate product, which were then transformed into SnO2 nanotubes with a fiber‐in‐tube structure during heat treatment at 500 °C. Nanofibers with a diameter of 85 nm were found to be located inside hollow nanotubes with an outer diameter of 260 nm. The prepared SnO2 nanotubes had well‐developed mesopores. The discharge capacities of the SnO2 nanotubes at the 2nd and 300th cycles at a current density of 1 A g?1 were measured as 720 and 640 mA h g?1, respectively, and the corresponding capacity retention measured from the 2nd cycle was 88 %. The discharge capacities of the SnO2 nanotubes at incrementally increased current densities of 0.5, 1.5, 3, and 5 A g?1 were 774, 711, 652, and 591 mA h g?1, respectively. The SnO2 nanotubes with a fiber‐in‐tube structure showed superior cycling and rate performances compared to those of SnO2 nanopowder. The unique structure of the SnO2 nanotubes with a fiber@void@tube configuration improves their electrochemical properties by reducing the diffusion length of the lithium ions, and also imparts greater stability during electrochemical cycling.  相似文献   
40.
Stabilization of the central atom in an oxidation state of zero through coordination of neutral ligands is a common bonding motif in transition‐metal chemistry. However, the stabilization of main‐group elements in an oxidation state of zero by neutral ligands is rare. Herein, we report that the transamination reaction of the DAMPY ligand system (DAMPY=2,6‐[ArNH‐CH2]2(NC5H3) (Ar=C6H3‐2,6‐iPr2)) with Sn[N(SiMe3)2]2 produces the DIMPYSn complex (DIMPY=(2,6‐[ArN?CH]2(NC5H3)) with the Sn atom in a formal oxidation state of zero. This is the first example of a tin compound stabilized in a formal oxidation state of zero by only one donor molecule. Furthermore, three related low‐valent SnII complexes, including a [DIMPYSnIICl]+[SnCl3]? ion pair, a bisstannylene DAMPY{SnII[N(SiMe3)2]2}2, and the enamine complex MeDIMPYSnII, were isolated. Experimental results and the conclusions drawn are also supported by theoretical studies at the density functional level of theory and 119Sn Mössbauer spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号