首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用XRD、XPS、及H_2—TPD技术对不同Cu/Co比的几个RaneyCu-Co催化剂进行了表征.并与反应醇选择性进行了关联.结果表明:RaneyCu-Co催化剂均由不同Cu/Co比的两个Cu-Co固溶体相组成,还原(H_2,563K,2h)前,表面除有Cu ̄0和Co ̄0外,尚有少量Cu ̄(+1)和显著量的Co ̄(+2)存在,还原后,Cu ̄(+1)几乎消失,Co ̄(+2)仍有一定量存在,在反应温度下(563K),CO和CO_2均能使表面Co ̄0部分氧化,且CO_2氧化能力大于CO,而合成气(H_2/CO=2)表现为还原的性质。三种气氛对Cu ̄0无明显影响。催化剂表面Cu/Co比高于体相Cu/Co比,表面Cu富集显著.RaneyCu-Co催化剂表面有四种吸氢中心:Cu(弱吸氢中心),高配位Co(弱吸氢中心),低配位Co(活化吸氢中心),及强吸氢中心;对不同催化剂,表面低配位Co中心的比例与醇选择性有一致的变化规律。基于上述结果,就CO播入中心进行了讨论。  相似文献   

2.
CO2部分氧化乙烷制乙烯Pd—Cu/MoO3—SiO2催化剂的研究   总被引:7,自引:0,他引:7  
李青  钟顺和 《应用化学》1998,15(6):49-52
用化学吸附-红外光谱、化学吸附-程序升温脱附(TPD)和微型反应技术研究了Pd-Cu/MoO3-SiO2(MoSO)催化剂对CO2和乙烷的吸附活化和部分氧化反应性能.结果表明,乙烷以C—H键中的H吸附于MoSO载体表面MoO键的端基氧上;Pd-Cu/MoSO催化剂对CO2有良好的化学吸附活化性能,CO2的吸附除有线式吸附态和剪式吸附态外,还有一种新的卧式吸附态;Pd-Cu/MoSO催化剂的晶格氧参与了化学反应.探讨了在Pd-Cu/MoSO催化剂上CO2的部分氧化乙烷反应机理  相似文献   

3.
氯丙烯在不同催化剂表面上吸附的TPD结果表明:在TS-1上有三重脱附峰,而在TiO2/Silicalite上仅有单峰。H_2O_2或分子O_2在催化剂表面吸附后,在脱附物种中可用质谱检测到原子O(16)物种;说明H_O_2或分子O_2在样品表面存在解离吸附;并发现解离分子O_2的活性很低。TS-1能同时吸附氯丙烯和H_2O_2,而在SiO_2/Silicalite表面的吸附却与吸附顺序有关。环氧化活性顺序如下:TS-1(TPAOH)>TS-1(TPABr+NaOH)>TiO_2/Silicalite。TS-1沸石的高氧化活性可能与H_2O_2吸附后表面原子O(16)的形成有关。  相似文献   

4.
本文并行考察了用溶剂化金属原子分散(SMAD)、浸渍、共沉淀三种方法制备的Cu-Co催化剂的一氧化碳加氢反应(563K,6MPa,H2/CO=2)性能及吸附态CO的红外光谱.结果表明:(1)三种催化剂上反应产物均为C1-C5正构醇及正构烃,总醇的选择性依下列次序递增:SMAD<浸渍<共沉淀;(2)表面低配位钻中心上多重吸附态CO的红外吸收峰的面积分数,对不同催化剂的变化规律,与醇选择性的变化一致;(3)高温还原和焙烧均使醇选择性下降,同时使表面低配位Co0中心减少.据此讨论了CO插入中心,活性结构及制备方法的影响.  相似文献   

5.
本文并行考察了用溶剂化金属原子分散(SMAD)、浸渍、共沉淀三种方法制备的Cu-Co催化剂的一氧化碳加氢反应(563K,6MPa,H2/CO=2)性能及附态CO的红外光谱。结果表明:(1)三种催化剂上反应产物均为C1-C5正构醇及正构烃,总醇的选择性依下列次序增:SMAD<浸渍<共沉淀。(2)表面低配位钴中心上多重吸附态CO的红外吸收峰的面积分数,对不同催化剂的变化规律,与醇选择性的变化一致;(3  相似文献   

6.
本文采用XRD、TPR、TPD-MS、TPSR-MS技术研究了金属组分Ni、Cu间及不同担体(包括SiO_2、TiO_2、Mgo和γ-Al_2O_3)和活性组分Ni-Cu间的相互作用及其对CO_2催化加氢性能的影响。结果表明,这两种相互作用,不同程度地引起催化剂吸附H_2和CO_2能力的变化,进而影响到CO_2加氢的反应性能。  相似文献   

7.
超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究   总被引:1,自引:0,他引:1  
采用MS-TPSR和MS-TPD技术在不同粒度的超细Cu-ZnO-ZrO2催化上考查了CO2和CO加氢合成甲醇的反应过程和吸附活化特征。研究表明,CO2和CO都可以直接加氢合成甲醇。  相似文献   

8.
利用TPR、H_2-TPD技术,考察了氢气氛下的Pt-Mo/Al_2O_3和Pt-Co-Mo/Al_2O_3催化体系中物种和电荷交换的现象和规律,揭示了Pt和Co在表面Mo物种还原过程中助剂作用的本质.Pt-Mo/Al_2O_3的TPR、H_2-TPD结果证明,由于微量Pt参与了表面Mo物种还原时的物种和电子交换,有效地降低了其还原温度.Rt-Mo/Al_2O_3在氢还原过程中,氢和Mo容易形成载有活动氢的氢物种,并储存在催化剂表面,这种活动氢在Ar中,甚至Ar-H2混合气中可以释放出来。Pt-Co-Mo/Al2O3的研究结果表明,Co可以进一步促进Mo的还原.在样品预还原过程中,氢和Co可以形成氢物种,其上的氢具有更强的可动性,很容易溢流到Mo物种的边上促进其还原.根据以上规律可以推测,加氢脱硫催化剂中Co和贵金属的作用是使催化剂更容易形成低价的配位不饱和的钼中心,也就是HDS活性中心.  相似文献   

9.
CO2在Cu-Pd/MoO3-SiO2催化剂上的吸附与表面反应   总被引:5,自引:0,他引:5  
王建伟  邵宇  钟顺和 《催化学报》1998,19(4):305-308
用表面反应改性法制备了MoO3-SiO2表面复合物,用等体积浸渍法制备了MoO3-SiO2担载Cu-Pd金属催化剂,用IR和TPD研究了C类其上的吸附,考察了CO2吸附产生CO和O的TPD-MS结果,讨论了CO2在Cu-Pd/MoO3-SiO2上的表面反应机理。结果表明:CO2在催化剂上具有良好的化学吸附性能,形成线式吸附态、剪式吸附态和卧式吸附态;CO2卧式吸附态具有良好的表面反应活性,一定温度  相似文献   

10.
应用XRD、ESR、URDS、XPS及XAES等手段研究了CO2加H2合成甲醇Cu-Zn-O催化剂在还原后和反应状态下的表面化学状态。结果表明,在还原及反应状态下,催化剂表面仅能检测到CU^0,而未发现稳定的Cu^2+和Cu^+存在;ZnO被 部分还原产生低价锌Zn^(2-δ)+(0<δ<2)。关联活性测试结果认为:Cu^o/Zn^(2-δ)+O构成CO2加H2合成甲醇反应的活性中心。  相似文献   

11.
Fe—Silicalite—2催化剂表面CO2加氢反应性能的研究   总被引:3,自引:0,他引:3  
研究了Fe/Silicalite-2催化剂CO2加氢低碳烯烃反应性能,利用CO2-TPD,CO2/H2-TPSR和CO/H2-TPSR表征手段,考察了铁含量及MnO助剂对Fe/Silicalite-2催化剂CO2吸附脱附及加氢反应性能的影响,表明随铁含量增加可提高催化剂对CO2的吸附能力,有利于提高CO2加氢反应的转化率。  相似文献   

12.
制备了Cu-Zn-Al (4/50/5)催化剂(Cat)和Cu-Zn-Al-Li(40/50/5/5)催化剂(Cat-Li).并将其分别用于由CO/H_2和CO_2/H_2合成甲醇。诸如TPD、TPR、TPSR、脉冲、CD3I-捕获、同位素标记、EPR及原位DRIFT等技术和方法被用来表征这两种催化剂及研究反应机理,对处于去氢、含氢及含氧态催化剂进行了对比研究以期阐明表面氧和表面氢对CO_2和CO活化所起的作用。提出了一个由甲酸根和甲醛氢化及甲醇氧化结果为证的CO/CO_2氢化机理。由于通过Li 取代CuO晶格上的Cu2+形成的氢空位,在Cat中添加Li+改善了甲醇合成活性。CO_2能被一捕获的电子(F-中心)活化,生成的CO2-能容易地被氢化成甲酸根和亚甲基双草酰,后者分解生成H2CO和表面氧。CO能被表面氧活化,生成的CO2-将遵循CO_2氢化的途径。在CD3I-捕获的实验中,我们捕获了表面氧。在无表面氧时,CO可能直接氢化成甲酸基,即CO_2氢化中的一途径。由亚甲基双草酰产生的H2CO表面模型可能与由甲醛吸附或CO氢化生成的H2CO表面模型不同。  相似文献   

13.
Cu,Pd-ZSM-5上NO分解和CO氧化的催化作用   总被引:4,自引:0,他引:4  
双交换Cu,pd-ZSM-5催化剂(Cu交换度为105%,Pd交换度分别为3.4%和33%)对CO氧化反应有活性增强作用,对NO分解反应不存在增强效应.双交换催化剂在于交换程序不同,而表面物种不同,活性组分的分布状态不同,因而有不同的活性.先交换Cu,400℃焙烧后再交换pd的Cu-Pd-ZSM-5催化剂,对上述两类反应的活性存双组分催化剂中均为最高.H_2-TPR谱表明,共交换的Cu-Pd-ZSM-5中尚有部分CuCl+占据了部分交换位置,而使CO氧化活性稍有下降.N_2-DTA和H_2-TPR谱结果表明,Pd交换到Cu-ZSM-5中后,抑制了吸附水和水合铜化合物的形成,由此提高了在200—300℃时氧的吸附量.后者的大小和CO氧化活性有顺变关系.N_2-DTA谱中340—445℃的放热峰可能分别表征了和NO分解活性有关的铜氧桥或把氧桥的形成,该放热峰的峰温愈低,峰面积愈大,则NO分解活性愈高.  相似文献   

14.
用表面反应改性法制备了TiO2-SiO2(TSO)表面复合物载体.采用TPR,IR,TPDMS和TPSR-MS等技术研究了NI-Cu/TSO间的相互作用及其对CO加氢反应的催化性能.结果表明,NiO-CuO与TSO间的相互作用导致CuO的还原温度降低和NiO的还原温度升高,并有少量表面物种生成;还原后的Ni-Cu/TSO催化剂表面上存在着两类活性中心,即合金相中的Ni及载体相中的Tin+(或Tin+-O);CO在催化剂表面存在孪生、线式、桥式和卧式等4种吸附态;H2在催化剂表面上发生解离吸附形成Ni-H和Tin+-H,前者比较活泼,是加氢反应的主要H源;卧式吸附态极易在催化剂表面裂解形成Ni-C和Tin+-O,前者是加氢反应的C源,使CO加氢生成烃类的反应在Ni中心上按"表面碳"机理进行,其生成乙烯的选择性大于60%.H2O的生成反应在Tin+中心上按Tin+-O与Tin+-H或Ni-H反应的途径进行.  相似文献   

15.
CoMo/Al_2O_3和CoMo/TiO_2-Al_2O_3加氢脱硫催化剂的研   总被引:4,自引:0,他引:4  
研究了CoMo/Al2O3和CoMo/TiO2-Al2O3催化剂的加氢脱硫性能,并用LRS,XRD和TPS等方法表征其表面相结构和硫化行为.结果表明,以TiO2-Al2O3为担体的Mo和CoMo催化剂的活性均比相应的Al2O3为担体的高;少量Co,Ni助剂的引入可显著提高MoO3在担体上的分散度和改进催化剂的活性;Co助剂还有降低Mo物种硫化温度的作用.  相似文献   

16.
研究了9种助剂对用于CO2加氢反应的超细CuO-ZnO-SiO2催化剂性能的影响,并进行了XRD和TPR表征.结果表明,助剂影响超细催化剂的性质和催化性能,TiO2、CeO2、MgO和La2O3是CO2加氢合成甲醇的超细CuO-ZnO-SiO2催化剂体系的优良助剂.在含有不同助剂的CuO-ZnO-SiO2催化剂体系内存在CuO和ZnO晶相,但除CeO2以外,其它的助剂都可能以微晶或无定型的形式存在.TPR研究表明,添加的助剂除CeO2以外,都使超细CuO-ZnO-SiO2催化剂的还原温度提高,而且助剂对CuO-ZnO-SiO2催化剂活性的影响,按照助剂对CuO-ZnO-SiO2催化剂还原温度的影响进行了探讨  相似文献   

17.
Ni-Cu和MgO-SiO_2间的相互作用及其对催化性能的影响   总被引:2,自引:0,他引:2  
本文用TPR,IR,TPD和TPSR等技术研究了以表面改性法制备的MgO-SiO2(MSO)表面复合物担载的Ni-CU合金间的相互作用及其对CO加氢反应催化性能的影响.结果表明,NiO-CuO与MSO间的相互作用导致部分MO与MSO形成表面物种从而使金属组分氧化物还原温度明显升高;还原后的Ni-Cu/MSO表面上存在着两类活性中心,即合金相中的Ni与载体相中的Mg2+(或Mg2+-O);在两类活性中心的协同作用下,CO吸附除有孪生、线式和桥式吸附态物种外,还有一种新的卧式吸附态(Ni...C=O→Mg2+).这种吸附态的活化程度较高,易在表面上发生裂解形成Ni-C和Mg2+-O,其中Ni-C是加氢反应的碳源;H2在催化剂表面上发生解离吸附形成Ni-H和Mg2+-OH,前者比较活泼,是加氢反应的氢原.CO加氢生成烃类的反应在Ni中心上按"表面碳"机理进行,其生成CZH4的选择性高于80%;H2O的生成反应按2(Mg2+-OH)-→Mg2++(Mg2+-O)+H2O方式进行.  相似文献   

18.
氯丙烯在不同催化剂表面上吸附的TPD结果表明在TS-1上有三重附峰,而在TiO2/Silicalite上仅有单峰,H2O2或分子O2在催化剂表面吸附后,在脱附物种中可用质谱检测到原子O(16)物种;说明H2O2或分子O2在样品表面存在解离吸附;并发现解离子分子O2的活性很低,TS-1能同时吸附内烯和H2O2,而在SiO2/Silicalite表面的吸附却与吸附顺序有关,环氧化活性顺序如下:TS-1  相似文献   

19.
CO和H_2在非晶态合金Ni-B、Co-B催化剂上的吸附及其作用的TPD-MS研究张菊,郑小明,周烈华(杭州大学催化研究所,杭州,310028)关键词非晶态Ni(Co)-B合金,H_2、CO吸附,TPD-MS非晶态合金作为一种新型催化材料在加氢反应中表...  相似文献   

20.
采用XRD、BET、TPR手段,研究了焙烧和还原温度对超细CuO-ZnO-SiO2催化剂的性质及其CO2加氢反应催化活性的影响.胶体在573-773K范围内焙烧生成CuO、Cu2O、ZnO晶相,随着焙烧温度继续升高,CuO和ZnO晶粒逐渐变大,但催化剂的比表面积和孔容变化很小.在973K焙烧后出现Zn2SiO4晶相,使催化剂比表积和孔容变小,导致催化剂活性降低.焙烧温度对催化剂活性的影响大于对CO2加氢产物分布的影响.在548-648K范围内,催化剂还原温度对其催化活性影响不大.703K高温还原后,可能由于Cu0晶粒的出现,使得催化剂的活性下降.TPR研究结果进一步表明,焙烧温度影响CuO同ZnO、SiO2之间的相互作用和催化剂的还原行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号