首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中性镍催化剂的研制及其对乙烯聚合反应的催化性能   总被引:3,自引:0,他引:3  
 通过环己基氯与对位取代酚烷基化方法在酚的氧邻位引入高位阻的环己基,再经甲酰化、胺 缩合及配合制得两种新的中性镍配合物[O-(3-C6H11)(5-CH3)C6H2-o-C(H)∶N-2,6-(i-Pr)2C6H3]Ni(Ph3P)(Ph)和[O-(3-C6H11)(5-Cl)C6H2-o-C(H)∶N-2,6-(i-Pr)2C6H3]Ni(Ph 3P)(Ph). 在Ni(COD)2(COD环辛二烯)存在下,两种配合物均可有效地催化乙烯聚合反应,且后者的催化性能明显优于前者的催化性能. 两种配合物对温度很敏感,适宜的聚合温度是45~55 ℃. 随着乙烯压力的提高,催化剂的活性显著提高,聚合物的粘均分子量(Mη)显著增大,带支链的聚乙烯减少. 在n(Ni(COD)2)/n(cat)=3,V(PhCH3)=30 ml,p(C2H4)=1.2 MPa,θ=45 ℃和t=20 min的条件下,前者配合物的活性为3.62×105 g/(mol·h),聚乙烯的Mη=4.94×104; 后者配合物的活性为7.29×105 g/(mol·h),聚乙烯的Mη=7.16×104. 两种配合物添加极性物质后的活性顺序为: 乙醚>四氢呋喃>乙酸乙酯>水>乙醇. 其中,乙醚和四氢呋喃可使催化剂活性提高.  相似文献   

2.
3-烯丙基-5-氯水杨醛亚胺镍系催化剂催化乙烯聚合研究   总被引:1,自引:0,他引:1  
合成了 3 烯丙基 5 氯水杨醛亚胺配体 ,并与trans [NiCl(Ph) (PPh3) 2 ]反应合成了配合物 (7) { [O (3 Allyl) (5 Cl)C6 H2 ortho C(H)N 2 ,6 C6 H3(i Pr) 2 ]Ni(Ph3P) (Ph) } ,以质谱 ,1 H NMR和元素分析对配体及配合物进行了表征 .在Ni(COD) 2 作助催化剂下能有效地催化乙烯聚合 .在 8 0 8× 10 5Pa的压力下 ,其最高活性可达 6 31× 10 5gPE (molNi·h) ,所得聚乙烯粘均分子量在 1 5 7× 10 4 ~ 4 34× 10 4 之间 .添加THF、乙酸乙酯、乙醚对催化聚合性能影响不显著 ,然而添加MMA则不仅没有共聚 ,相反严重降低了催化活性 .  相似文献   

3.
以4种基于水杨醛亚胺配体的镍配合物bis[N-(2,6-diisopropylphenyl)salicylaldiminate]-nickel(Ⅱ)(C1), bis[N-(2,6-diisopropylphenyl)-3-methylsalicylaldiminate]-nickel(Ⅱ)(C2), bis[N-(2,6-diisopropylphenyl)-3-isopropylsalicylaldiminate]-nickel(Ⅱ)(C3)和[N-(2,6-diisopropylphenyl)-3-isopropylsalicylaldiminate]-nickel(Ph)(PPh3)(C4)为催化剂, 在甲基铝氧烷(MAO)作用下, 对乙烯与甲基丙烯酸甲酯(MMA)进行催化共聚. 以C3为模型催化剂, 研究了Al/Ni摩尔比、 聚合温度、 聚合时间等对共聚反应的影响. 在最佳的聚合条件下, 探索了不同的催化剂结构对共聚反应的影响. 结果表明, 对于双(水杨醛亚胺)镍配合物, C2的活性高于C1和C3, 为13.1 kg/(mol Ni·h), 而C3的插入率最低, 为14.1%. 对于具有相同配体不同结构的配合物C3和C4, 含双水杨醛亚胺配体的C3的催化活性高于含单水杨醛亚胺配体的C4, 而两者在共聚单体MMA的插入率方面差别不大. 对所得共聚物微观结构和热性能进行了表征.  相似文献   

4.
共轭的含氮配体,特别是其过渡金属配合物作为模拟生命体系中的一些现象而被人们广泛研究和重视[1]。我们在用二(三甲基硅基)甲基锂与两摩尔的不含α-H的腈进行加成反应时,由于三甲基硅基的1,3-迁移反应得到了一类非常有趣的五元共轭二亚胺配合物[2]。在本工作中,我们合成了两种新型的五元共轭二亚胺镍(Ⅱ)配合物:Ni[HNC(Ph)CHC(Ph)NH]2(2)和Ni[HNC(tBu)CHC(Ph)NH]2(4),并对配合物(2)做了X-射线单晶结构分析,其性能的研究正在进行中。  相似文献   

5.
合成了3个巢式磷碳硼烷镍配合物[NiCl(Py){7,8-(PPh2)2-7,8-C2B9H10}].CH2Cl2(1)、[Ni{7,8-(PPh2)2-7,8-C2B9H10}2](2)、[Ni{7,8-(OPPh2)-7,8-C2B9H10}{7,8-(PPh2)-7,8-C2B9H10}](3),并通过元素分析、红外光谱、核磁共振谱以及单晶衍射等手段对其进行了表征。单晶结构分析表明,镍离子的配位环境在这3个配合物中都是稍微扭曲的平面方形,其中2个配位位置由磷碳硼烷配体的两个磷原子占据,另外2个配位位置分别由氯离子、吡啶氮原子或者氧化的磷碳硼烷配体的氧原子占据。借助于分子间的C-H…Cl氢键或者C-H.H-B双氢键作用,3个配合物都可以形成一维超分子结构。  相似文献   

6.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1),[C6H5—N C(Me)—C(Me)N—C6H5]NiBr2(C2),[(2,6-C6H3(Me)2)—N C(Me)—C·(Me)N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An)N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4),在甲基铝氧烷(MAO)作用下,对甲基丙烯酸甲酯(MMA)进行催化聚合.以C2为模型催化剂系统研究了Al/Ni摩尔比、单体浓度、聚合温度、聚合时间和反应溶剂对催化活性及聚合物分子量的影响.在较适合的聚合条件(催化剂用量为1.6μmol,Al/Ni摩尔比为800,MMA浓度为2.9 mol/L,甲苯为溶剂,聚合温度为60℃,聚合时间为4 h)下,讨论了催化剂结构对催化活性和聚合物分子量的影响.研究发现,催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA).催化剂结构中空间位阻增大导致催化活性降低,空间位阻最小的C1催化活性最高[达107.8 kg/(mol Ni·h)];而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h).催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加.C2催化活性为62.5 kg/(mol Ni·h),所得聚合物的分子量为5.0×104;而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h),并得到更高分子量的聚合物(7.6×104).  相似文献   

7.
研究了溶剂分别为 THF, H2O/THF, CH3CN/THF以及ROH/THF (R=Me, Et, iso-Pr, tert-Bu)条件下TpRuH(PPh3)- (CH3CN) [Tp=hydrotris(pyrazolyl)borate]催化氢化苯乙烯生成乙基苯的反应, 发现向干燥THF体系中添加微量 H2O, CH3CN或ROH对催化反应都具有显著的促进作用. 催化机理研究表明, 小分子添加物首先取代TpRuH(PPh3)(CH3CN)中的PPh3配体形成中间体TpRuH(CH3CN)L (L=H2O, CH3CN或ROH), 降低空间位阻, CH3CN配体随后被苯乙烯取代生成中间体 TpRuH(H2C=CHPh)L; η2-苯乙烯插入Ru—H键后形成的Ru-烷基中间物与H2反应生成η2-H2配合物 TpRu(CH2CH2Ph)(H2)L或TpRu[CH(CH3)Ph](H2)L, 进而发生σ-复分解反应生成乙基苯完成催化循环.  相似文献   

8.
采用自制的新型双苯并环己酮芳亚胺镍催化剂双苯并环己酮-2,6-二甲基苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3(CH3)2N]CH3}2,C1)和双苯并环己酮-2,6-二氯苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3Cl2N]CH3}2,C2)与三五氟苯硼[B(C6F5)3]结合,在一定的反应条件下可高效催化降冰片烯(NB)与甲基丙烯酸正丁酯(n-BMA)的乙烯基加成共聚合.提出了催化聚合时存在的可能失活机理;研究了不同单体投料比对催化活性、产率及产物性能的影响.根据Kelen-Tüds方法分别估算出2种单体在不同催化体系下的竞聚率,即当催化体系为C1/B(C6F5)3时,竞聚率rn-BMA=0.02,rNB=16.28,rNB·rn-BMA=0.32;当催化体系为C2/B(C6F5)3时,rn-BMA=0.01,rNB=64.83,rNB·rn-BMA=0.65.结果表明,2种单体在2种体系催化下均为无规共聚合.  相似文献   

9.
水对二氧化碳插入TpRu(PPh3)(CH3CN)H生成甲酸根配合物的影响   总被引:1,自引:0,他引:1  
分别研究了在干燥THF及H2O/THF条件下CO2与TpRu(PPh3)(CH3CN)H(Tp=Hydrotris(pyrazolyl)borate)的反应, 发现水对CO2插入TpRu(PPh3)(CH3CN)H的反应具有显著促进作用. 原位高压NMR研究显示, 在水存在下, CO2插入Ru-H键形成水合甲酸根配合物TpRu(PPh3)(CH3CN)(η1-OCHO)H2O, 其中甲酸根配体与溶剂中水分子形成分子间氢键. B3LYP水平的理论计算表明, CO2插入TpRu(PPh3)(CH3CN)H 中Ru-H键的能垒由于水的存在而显著降低; 在过渡态, CO2分子中碳原子的亲电性由于其氧原子与水分子形成氢键而得到增强. TpRu(PPh3)(CH3CN)(η1-OCHO)*H2O很快转化为另一甲酸根配合物TpRu(PPh3)(H2O)(η1-OCHO), 并与之达成平衡. 后者由于甲酸根配体与水分子配体间形成分子内氢键而稳定.  相似文献   

10.
长链烷基二苯基膦—铑配合物催化烯烃氢甲酰化反应研究   总被引:1,自引:0,他引:1  
陈骏如  陈华等 《分子催化》2001,15(6):413-415
研究了烷基二苯基膦-铑配合物RhCl(CO0(n-C8H17PPh2)2(1)和RhCl(Co)(n-C12H25PPh2)2(2)对1-辛烯氢甲酰化反应的催化性能。结果表明,配合物1比2具有更高的催化活性,而配合物2对生成正构醛的选择性更好;当催化剂浓度或膦/铑比增加时,配合物2催化成正构醛的选择性呈下降趋势,显示出与以PPh3为配体时的不同的性能。  相似文献   

11.
尹传奇  吴少文 《化学学报》2003,61(5):666-670
分别研究了在干燥THF及H2O/THF条件下CO2与TpRu(PPh3)(CH3CN)H [Tp=Hydrotris(pyrazolyl)borate]的反应,发现水对CO2插入TpRu(PPh3)(CH3CN)H 的反应具有显著促进作用.原位高压^1H,^31P和^13C核磁共振研究显示,在水存在下 ,CO2插入Ru-H键形成水合甲酸盐配合物TpRu(PPh3)(CH3CN)(η^1-OCHO)·H2O键而 得到增强,进而显著降低CO2插入TpRu(PPh3)(CH3CN)H中Ru-H键的活化能。TpRu (PPh3)(CH3CN)(η^1-OCHO)·H2O很快部分转化为另一甲酸盐配合物TpRu(PPh3)( H2O)(η^1-OCHO),二者最后达成平衡,后者由于甲酸盐配体与水分子配体间形成 分子内氢键而稳定。  相似文献   

12.
合成了一系列带有不同取代基的β-二亚胺配体及其Ni(Ⅱ)的配合物.利用核磁共振谱、元素分析和单晶X射线衍射等手段对配体及配合物进行了表征.元素分析和单晶结构分析表明,在相同的实验条件下苯基取代的β-二亚胺配体锂盐与NiCl2反应只能得到双配体化合物1;而2,6-二甲基苯基及2,6-二异丙基苯基取代的配体锂盐与NiCl2反应得二聚的单氯化物2和3,2个Ni原子通过双氯桥连接在一起.配合物2和3经烷基铝活化后催化乙烯聚合可得到高分子量聚乙烯,活性可达到2.0×105gPE/(molcat·h),分子量最高可达到100万以上.  相似文献   

13.
硅卡宾(R2Si?, silylene)是卡宾的相似体,可以作为配体与金属形成配合物.由于硅的原子半径比碳大,硅卡宾可与Lewis碱配位形成三配位甚至四配位的化合物同时保持很强的配位能力.因此,硅卡宾兼具卡宾和膦配体的结构特征,在稳定新颖的金属配合物及均相催化领域或具有更大的调控空间.本工作报道硅卡宾铁氮气配合物[Ph C(t-Bu N)2Si CH2C(t-Bu)NAr]FeN2(D,Ar=2,6-(i-Pr)2C6H3)催化的炔烃的选择性硼氢化反应.研究发现,该配合物对炔烃的硼氢化反应具有很好的区域及立体选择性,主要生成E式构型产物并表现出很好的官能团耐受性.该研究表明,硅卡宾对过渡金属催化具有很好的调控作用,具有很好的研究潜力.  相似文献   

14.
用水热法合成了两种结构新颖的配合物[Cu(PDA)(H2O)2](Ⅰ)和[Ni(PZCA)2(H2O)2](Ⅱ)(H2PDA=2,6-吡啶-二甲酸,HPZCA=2-吡嗪羧酸);利用元素分析、红外光谱和X射线单晶衍射等分析了产物的组成和结构.结果表明,两种配合物均属单斜晶系,空间群均为P21/c,中心离子Cu(Ⅱ)和Ni(Ⅱ)均采取畸变的六配位八面体配位方式;配合物I通过π-π堆积作用和氢键构筑成三维结构,配合物Ⅱ以氢键联接形成二维层状结构.此外,配合物Ⅱ中的PZCA-来自于Ni(Ⅱ)对2,3-吡嗪-二羧酸(H2PZDA)配体的催化脱羧过程.  相似文献   

15.
合成了具有不同电子效应的 3种双膦配体 .其给电子性为 Ph2 P(CH2 ) 4 PPh2 >Ph2 P(O) (CH2 ) 4 PPh2 >Ph2 P(O) (CH2 ) 4 P(O) Ph2 .这 3种配体与醋酸铑二聚体配合物构成的催化剂 ,在混合辛烯的均相氢甲酰化反应中表现出的活性和选择性与配体给电子性强弱的次序完全相反 .我们认为 ,具有弱配位性的 [Rh(CH3COO) 2 ]2 Ph2 P-(O) (CH2 ) 4 P(O) Ph2 催化体系 ,因其形成的活性物种的活泼性高 ,有利于惰性的长碳链混合辛烯的活化转化 .对该体系循环使用的结果表明 ,经历 3次循环后 ,催化剂活性逐渐降低 .  相似文献   

16.
合成并表征了含RCOO-基团的单核(Ni~1~Ni~2)及双核(Ni~3)镍配合物[(2,6-R_2-C_6H_3)-N=C(H)-(3-Ph-5-Ph COO-2-O-C_6H_2)-κ~2-N,O]Ni(CH_3)(pyridine)](R=i Pr;3,5-t Bu_2C_6H_3)并用于催化乙烯均聚和共聚反应。作为单组分催化剂,这些配合物可以有效地催化乙烯聚合得到中等相对分子质量的支化聚乙烯(PE)。供电性的Ph COO—基团促进了催化剂Ni~1的引发,从而在低温下比Ni~0活性更高。引入大位阻的2,6-(3,5-二叔丁基苯基)苯胺基团,催化剂Ni~2在5×10~5Pa下的活性高达1.8×10~6g PE mol~(-1)·Ni~(-1)·h~(-1),是活性最高的水杨醛亚胺中性镍催化剂之一。与相应的单核催化剂相比,双核催化剂Ni~3对三苯基膦具有更好的耐受性。这些催化剂可催化乙烯与1,5-己二烯、1,7-辛二烯、6-溴-1-己烯或10-十一烯酸甲酯的共聚合,制备功能化聚乙烯。  相似文献   

17.
马小莉  孙帅  杨鹰 《无机化学学报》2013,29(6):1295-1301
利用金属单质还原的方法合成了不同取代基的α-二亚胺配体支持的2个硅(Ⅳ)配合物L(SiMe3)2(2)(L=[(2,6-iPr2C6H3)NC(Me)]2)和L′(SiMe3)2(4)(L′=[(2,6-iPr2C6H3)NCH]2)。通过X-射线单晶衍射测定了配合物的单晶结构,并对其进行了元素分析、1HNMR、红外光谱表征,以及紫外-可见光谱和荧光光谱分析。结构分析表明,构成这2种化合物中心的NCCN骨架呈之字形分布,骨架上三取代的原子接近平面排布。2种硅配合物在紫外光激发下都具有较好的发光性质。  相似文献   

18.
研究了1-环戊烷基茚基二价镱配合物(1-C5H9C9H6)2Yb(THF)2作为单组分催化剂催化己内酯开环聚合反应, 考察了催化剂用量、聚合反应时间、聚合反应温度对己内酯聚合反应的影响. 结果表明, 配合物(1-C5H9C9H6)2Yb(THF)2对己内酯聚合有较高的催化活性; 温度升高, 聚合反应的转化率增加, 但产物的数均分子量及分子量分布无明显变化; 所得聚合物分子量分布较窄. 其它几种取代茚基稀土配合物也显示出较高的催化活性, 其活性有下列次序: (1-C2H5C9H6)2Sm(THF)2>(1-C5H9C9H6)2Sm(THF)>KSm(1-C5H9C9H6)3(THF)3>(1-PhCH2C9H6)2Sm(THF)2>(1-C5H9C9H6)2Yb(THF)2, 二价钐配合物较二价镱配合物具有较高的催化活性. 通过凝胶渗透色谱法测定了聚合产物的数均分子量及其分布.  相似文献   

19.
将(1R,2R)-环己二胺与2-羟基-1-萘甲醛和3,5-二叔丁基水杨醛反应,得到非对称Salen配体H2L,然后将配体H2L与Ni(OAc)2·4H2O、Cu(OAc)2·H2O、Mn(OAc)2·4H2O进行配位反应,得到3个单核配合物[Ni(L)]·CH2Cl2(1),[Cu(L)](2),[Mn(L)(Cl)]·CH2Cl2(3),分别采用1H NMR、FT-IR和元素分析对化合物进行了表征,并通过X射线单晶衍射技术测定了配体和3个配合物的晶体结构。配体H2L属于正交晶系,P212121空间群。配合物1属于单斜晶系,P21/c空间群,而配合物2和配合物1的结构相似。配合物3属于三斜晶系,P1空间群。  相似文献   

20.
合成了2个含三齿Schiff碱配体和单齿N-杂环分子的多核过渡金属配合物:1个含5-氯水杨醛缩对硝基苯甲酰腙(H2L1)和吗啡啉(Mf)的镍髤配合物[Ni(L1)(Mf)](1),1个含5-氯水杨醛缩水杨酰腙(H2L2)和吡啶(Py)的铜髤配合物[Cu2(L2)2(Py)2](2),并通过元素分析、红外光谱、紫外光谱以及单晶衍射等手段进行表征。在配合物1中,中心Ni髤与酰腙配体(L12-)的酚氧、亚胺氮、去质子酰胺氧原子以及中性吗啡啉氮原子配位形成平面四方形的N2O2配位构型,相邻配合物通过分子间氢键作用构筑成一维超分子链状结构。配合物2中含有2个晶体学上独立的双核铜髤配合物,相邻配合物分子的酚氧原子分别桥联2个[Cu(L2)(Py)]基本单元,形成2个含有Cu2(μ-O)2核心的配合物。每个Cu髤原子具有五配位的NONO(O)四角锥配位构型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号