首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phase conversions and kinetics of electrochemical intercalation of lithium from dimethylformamide solutions of LiCl into bulk electrodes of bismuth, indium and their intermetallic compounds InBi and In2Bi are studied using chronopotentiometry and chronoamperometry methods. The intercalation is controlled by non-steady-state lithium diffusion in the solid electrode. In the lithium–intermetallic compound systems, both components of alloys take part in the formation of compounds with lithium. Considerable volume changes, which occur during the intercalation, may lead to disintegration of lithium-containing phase constituents with a high lithium content. The extremum shape of cathodic chronoamperograms may be due successive and/or parallel reactions in which various lithium-containing compounds form. Some of these reactions are limited by solid-phase diffusion, while others involve the formation and diffusion-controlled growth of three-dimensional nuclei of a new phase.  相似文献   

2.
The electrochemical reactions of lithium with layered composite electrodes (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 were investigated at low voltages. The metal oxide 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 (x=0.95) which can also be represented in layered notation as Li(Mn0.46Ni0.46Ti0.05Li0.02)O2, can react with one equivalent of lithium during an initial discharge from 3.2 to 1.4 V vs. Li0. The electrochemical reaction, which corresponds to a theoretical capacity of 286 mAh/g, is hypothesized to form Li2(Mn0.46Ni0.46Ti0.05Li0.02)O2 that is isostructural with Li2MnO2 and Li2NiO2. Similar low-voltage electrochemical behavior is also observed with unsubstituted, standard LiMn0.5Ni0.5O2 electrodes (x=1). In situ X-ray absorption spectroscopy (XAS) data of Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 electrodes indicate that the low-voltage (<1.8 V) reaction is associated primarily with the reduction of Mn4+ to Mn2+. Symmetric rocking-chair cells with the configuration Li(Mn0.46Ni0.46Ti0.05Li0.02)O2/Li(Mn0.46Ni0.46Ti0.05Li0.02)O2 were tested. These electrodes provide a rechargeable capacity in excess of 300 mAh/g when charged and discharged over a 3.3 to −3.3 V range and show an insignificant capacity loss on the initial cycle. These findings have implications for combating the capacity-loss effects at graphite, metal–alloy, or intermetallic negative electrodes against lithium metal-oxide positive electrodes of conventional lithium-ion cells.  相似文献   

3.
The optimization of active electrode materials for advanced lithium batteries obtained by sonochemically promoted reactions is discussed. Composites containing amorphous CoSn intermetallic compound and exfoliated graphite are prepared by a combination of graphite mechanical exfoliation followed by the reduction of Co2+ and Sn2+ solutions in tetraethyleneglycol with NaBH4 with simultaneous high-intensity ultrasonication. X-ray diffraction and electron microscopy reveal relevant similarities with the negative electrode of the commercial Nexelion? battery. The resulting nanocomposite is tested as an electrode material using a lithium polyacrylate binder. The electrochemical cycling in lithium test cells shows capacities around 400 mAh/g after 400 cycles, and the ac impedance spectra reveal low resistance values. In the first discharge, nanocrystalline Li x Sn is formed. After cycling, the metallic nanoparticles (ca. 7–20 nm) remain to be X-ray amorphous and embedded in the binder.  相似文献   

4.
The effect of 15-crown-5, which is applied immediately to pure and modified surface of a lithium electrode, on the charge transfer resistance at the electrode/polymer electrolyte interface is studied. The polymer electrolyte consists of a 1: 1 mixture of oligourethan dimethacrylate and polypropylene glycol monomethacrylate (20 wt %), an initiator (azobisisobutyronitrile) (2 wt %), and a 1 M LiClO4 solution in gamma-butyrolactone (78 wt %). The conductivity of this gel electrolyte is 3 × 10?3 S cm?1. The temperature dependence of the impedance of the Li/gel electrolyte/Li electrochemical cells is measured for electrodes of four types. The activation energies for the charge transfer at the Li/electrolyte interface are calculated. It is found that, after treating the test lithium electrodes with 15-crown-5, the charge transfer resistance decreases, and in the case of the modified lithium surface, the activation energy for the process decreases by 1.8 times.  相似文献   

5.
The electrochemical behavior of the Li+/Li couple was studied at polycrystalline tungsten, platinum, copper and aluminum electrodes in tri‐1‐butylmethylammonium bis((trifluoromethyl)sulfonyl)imide ionic liquid mixed with a little propylene carbonate at 30 °C. Lithium cations were introduced into the ionic liquid by dissolution of lithium bis((trifluoromethyl)sulfonyl)imide which is highly soluble in ionic liquid. Propylene carbonate was used to reduce the viscosity of this ionic liquid in order to enhance the mass transfer and to additionally improve the stability of lithium deposits. At the tungsten and copper electrodes, the cyclic voltammetric behavior of a Li+/Li couple is a quasi‐reversible reaction. At the platinum electrode, the behavior becomes very complicated because of the alloy formation. Coulombic efficiency was used to evaluate the stability of lithium deposits at each electrode. The aluminum electrode showed the best efficiency due to the formation of Li‐Al alloy. However, lowest efficiency was obtained at the platinum electrode because of the low redox reversibility of the lithium in the Li‐Pt alloy. The diffusion coefficient of lithium cation in this solution was 1.0 ± 0.1 × 10?;7 cm2 s?;1 as determined by chronopotentiometry. The best coulombic efficiency obtained at the Al electrode is 97% but dropped to about 90% after 12 hours. The self‐discharge current of the lithium deposits at the Al electrode was 0.4 μA/cm2 during the experimental period.  相似文献   

6.
7.
Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.  相似文献   

8.
An ordered mesoporous WO(3-X) with high electrical conductivity (m-WO(3-X)) was prepared and evaluated as an anode material for lithium ion batteries (LIBs). Ordered mesoporous tungsten trioxide (m-WO(3)) with an identical pore structure to that of m-WO(3-X) and bulk WO(3-X) (b-WO(3-X)) was prepared for the comparison purpose. An m-WO(3-X) electrode exhibited a high reversible capacity (748 mAh g(-1), 6.5 Li/W) and a high volumetric capacity (~1500 mAh cm(-3)), which is comparable to the Li metal itself (ca. 2000 mAh cm(-3)). Also, an improved rate capability and a good cyclability were observed in the m-WO(3-X) electrode when compared with m-WO(3) and b-WO(3-X) electrodes. From electrochemical impedance spectroscopy (EIS) analysis, the advanced anode performance of the m-WO(3-X) electrode was probably attributed to large ordered mesopores and a high electrical conductivity. Differential scanning calorimetry (DSC) result displayed that the safety of m-WO(3-X) was more improved than those of graphite and Si anode materials.  相似文献   

9.
Tin(II) oxalate was studied as a novel precursor for active electrode materials in lithium-ion batteries. The discharge of lithium cells using tin oxalate electrodes takes place by three irreversible steps: tin reduction, forming a lithium oxalate matrix; solvent decomposition to form a passivating layer; and oxalate reduction in a two-electron process. These are followed by reversible alloying of tin with lithium, leading to a maximum discharge of 11 F/mol. Cycling of the cells showed reversible capacities higher than 600 mAh/g during the first five cycles and ca. 200 mAh/g after 50 cycles. Tin oxalate was converted to tin dioxide by thermal decomposition at 450 °C and also by a chemical method by dissolving tin oxalate powder in 33% v/v hydrogen peroxide at room temperature. The ultrafine nature of the tin dioxide powders obtained by this procedure allow their use as electrodes in lithium cells. The best capacity retention during the first five cycles was achieved for a sample heat treated to 250 °C to eliminate surface water. Electronic Publication  相似文献   

10.
蔡燕  李在均  张海朗  范旭  张锁江 《化学学报》2010,68(10):1017-1022
合成了五种新的1-烷基-2,3-二甲基咪唑二(三氟甲基磺酰)亚胺离子液体(alkyl-DMimTFSI).以离子液体作为Li/LiFeO4电池电解液,分别考察不同烷基(正丁基、正戊基、正辛基、异辛基和正癸基)对电解液理化性质、界面性质和电池行为的影响.结果表明离子液体的电化学窗口都可以达到5.6V(-0.4~5.2Vvs.Li+/Li),显示它们具有较好的电化学稳定性.加入碳酸亚乙烯酯作为添加剂后,离子液体电解液在Li负极形成稳定的固体电解质相界面膜(SEI),从而提高了Li负极的稳定性,保护了Li片不受腐蚀.电化学阻抗和循环伏安分析进一步揭示LiFeO4正极与离子液体电解液也有良好的兼容性.此外,研究还表明离子液体中烷基种类严重影响它们的电池行为.采用butyl-DMimTFSI和amyl-DMimTFSI电解液体系的电池充放电容量和可逆性明显优于另外三种离子液体,它们的首次放电容量分别达到145和152.6mAh/g,并表现出良好的充放电循环性能.因粘度最大,采用isooctyl-DMimTFSI电解液的电池首次放电容量仅为8.3mAh/g,但添加碳酸丙烯酯(质量比1∶1)稀释后首次放电容量上升至132.4mAh/g.  相似文献   

11.
The synthesized lotus-stalk Bi4Ge3O12 utilized as binder-free anode for LIBs demonstrates excellent cycling performance. The synthesized lotus-stalk Bi4Ge3O12 is composed of nanosheets, which is contribute to outstanding lithium storage performance.  相似文献   

12.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

13.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

14.
Tin(II) fluoride (SnF2) has a high Li‐storage capacity because it stores lithium first by a conversion reaction and then by a Li/Sn alloying/dealloying reaction. A polyacrylonitrile (PAN)‐bound SnF2 electrode was heat‐treated to enhance the integral electrical contact and the mechanical strength through its cross‐linked framework. The heat‐treated SnF2 electrode showed reversible capacities of 1047 mAh g?1 in the first cycle and 902 mAh g?1 after 100 cycles. Part of the excess capacity is due to lithium storage at the Sn/LiF interface, and the other part is assumed to correspond to the presence of reduced SnF2 with protons released during the thermal cross‐linking of PAN.  相似文献   

15.
Hierarchical superstructures formed by self‐assembled nanoparticles exhibit interesting electrochemical properties that can potentially be exploited in Li‐ion batteries (LIBs) as possible electrode materials. In this work, we tested two different morphologies of CuS superstructures for electrodes, namely, tubular dandelion‐like and ball‐like assemblies, both of which are composed of similar small covellite nanoparticles. These two CuS morphologies are characterized by their markedly different electrochemical performances, suggesting that their complex structures/morphologies influence the electrochemical properties. At 1.12 A g?1, the cells made with CuS tubular structures delivered about 420 mAh g?1, and at 0.56 A g?1, the capacity was as high as about 500 mAh g?1 with good capacity retention. Their ease of preparation and processing, together with good electrochemical performance, make CuS tubular dandelion‐like clusters attractive for developing low‐cost LIBs based on conversion reactions.  相似文献   

16.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

17.
锡钴合金电沉积层的结构与锂离子嵌脱行为   总被引:4,自引:0,他引:4  
应用电沉积方法制备Sn-Co合金镀层.X-射线衍射和扫描电子显微镜分析表明,该Sn-Co合金镀层为六方固溶体结构,含Co量为20%的Sn-Co合金,其沉积层呈现(110)择优取向.表面微孔随沉积层Co含量的增加而增多.以Sn-Co合金镀层作锂离子电极材料,电化学性能测试表明,其首次充电曲线表现出锡钴合金、锡及锡氧化物与锂合金化的多个反应综合特征,随后的充电曲线趋于稳定,呈现L i-Sn-Co合金化反应特征;具有择优取向和多孔结构的Sn-Co合金电极材料的充放电性能较好,首次库仑效率为63.9%,经过20次充放电循环后,其充电容量为461mAg/h,库仑效率为99%.  相似文献   

18.
《中国化学快报》2022,33(8):3931-3935
Iron fluoride (FeF3) is considered as a promising cathode material for Li-ion batteries (LIBs) due to its high theoretical capacity (712 mAh/g) with a 3e? transfer. Herein, we have designed a strategy of hierarchical and mesoporous FeF3/rGO hybrids for LIBs, where the hollow FeF3 nanospheres are the main contributor to the specific capacity and the 2D rGO nanosheets are the matrix elevating the electronic conductivity and buffering the volume expansion. The unique FeF3/rGO hybrid can be rationally synthesized by a non-aqueous in-situ precipitation method, offering the merits of large specific surface area with rich active sites, fast transport channels for lithium ions, effective alleviation of volume expansion during cycles, and accelerating the electrochemical reaction kinetics. The FeF3/rGO hybrid electrode possesses a high initial discharge capacity of 553.9 mAh/g at a rate of 0.5 C with 378 mAh/g after 100 cycles, acceptable rate capability with 168 mAh/g at 2 C, and feasible high-temperature operation (320 mAh/g at 70 °C). The superior electrochemical behaviors presented here demonstrates that the FeF3/rGO hybrid is a potential electrode for LIBs, which may open up a new vision to design high-efficiency energy-storage devices such as LIBs based on transition metal fluorides.  相似文献   

19.
Antimony nitride thin film has been successfully fabricated by magnetron sputtering method and its electrochemistry with lithium was investigated for the first time. The reversible discharge capacity of Sb3N/Li cells cycled between 0.3 V and 3.0 V was found above 600 mAh/g. By using transmission electron microscopy and selected area electron diffraction measurements, the conversion reaction of Sb3N into Li3Sb and Li3N was revealed during the lithium electrochemical reaction of Sb3N thin film electrode. The high reversible capacity and the good cycleability made Sb3N one of promising anode materials for future rechargeable lithium batteries.  相似文献   

20.
Lithium‐ion batteries (LIBs) are primary energy storage devices to power consumer electronics and electric vehicles, but their capacity is dramatically decreased at ultrahigh charging/discharging rates. This mainly originates from a high Li‐ion/electron transport barrier within a traditional electrode, resulting in reaction polarization issues. To address this limitation, a functionally layer‐graded electrode was designed and fabricated to decrease the charge carrier transport barrier within the electrode. As a proof‐of‐concept, functionally layer‐graded electrodes composing of TiO2(B) and reduced graphene oxide (RGO) exhibit a remarkable capacity of 128 mAh g−1 at a high charging/discharging rate of 20 C (6.7 A g−1), which is much higher than that of a traditionally homogeneous electrode (74 mAh g−1) with the same composition. This is evidenced by the improvement of effective Li ion diffusivity as well as electronic conductivity in the functionally layer‐graded electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号