首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   25篇
化学   31篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
本工作以聚甲基丙烯酸甲酯(PMMA)微球组装成的胶晶模板作为铸模, 溶胶-凝胶法辅助获得大孔LiNi0.8Co0.1Mn0.1O2 (NCM811)正极材料. 结果表明, 利用PMMA作为造孔剂, 形成了由100 nm的颗粒堆积而成的大孔结构, 这种结构有效地提高了材料的倍率性能和循环稳定性. 大孔NCM811在0.1C的首次放电比容量为190.3 mAh∙g-1. 2C倍率下NCM811纳米颗粒的放电比容量仅为129.3 mAh∙g-1, 而大孔NCM811的放电比容量为149.8 mAh∙g-1. 0.5C倍率下循环400次后大孔NCM811的容量保持率为83.02%, 明显高于纳米颗粒材料的38.59%.  相似文献   
2.
以粗糙铜箔为基底,采用一步电沉积法获得Cu-Sn合金,X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相.扫描电子显微镜(SEM)测试结果表明该合金表面由大量"小岛"组成,且每个"小岛"上存在大量纳米合金粒子.充放电测试结果表明,以该合金为锂离子电池负极,其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh·g-1.电化学阻抗谱测试结果显示,Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律.  相似文献   
3.
以三维多孔泡沫铜为基底, 通过直接电沉积的方法制备锂离子电池Cu6Sn5合金负极材料. 发现合金表面大量的微孔和“小岛”不仅增大电极的表面积, 而且显著缓解充放电过程中的体积变化. 测得三维多孔Cu6Sn5合金的初始放电(嵌锂)容量为620 mAh·g-1, 充电(脱锂)容量为560 mAh·g-1, 库仑效率达到90.3%, 具有较好的循环性能. 扫描电子显微镜(SEM)结果显示, 在泡沫铜基底上制备的Cu6Sn5合金电极具有比通常的铜片基底更好的结构稳定性, 经过50 周充放电循环后无明显的脱落现象.  相似文献   
4.
锡钴合金电沉积层的结构与锂离子嵌脱行为   总被引:4,自引:0,他引:4  
应用电沉积方法制备Sn-Co合金镀层.X-射线衍射和扫描电子显微镜分析表明,该Sn-Co合金镀层为六方固溶体结构,含Co量为20%的Sn-Co合金,其沉积层呈现(110)择优取向.表面微孔随沉积层Co含量的增加而增多.以Sn-Co合金镀层作锂离子电极材料,电化学性能测试表明,其首次充电曲线表现出锡钴合金、锡及锡氧化物与锂合金化的多个反应综合特征,随后的充电曲线趋于稳定,呈现L i-Sn-Co合金化反应特征;具有择优取向和多孔结构的Sn-Co合金电极材料的充放电性能较好,首次库仑效率为63.9%,经过20次充放电循环后,其充电容量为461mAg/h,库仑效率为99%.  相似文献   
5.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   
6.
用湿化学法合成了25KTiOPO4-75SiO2透明纳米玻璃陶瓷。采用X射线衍射、场发射扫描电子显微镜和二次谐波发生对玻璃陶瓷物相及纳米结构进行了分析。透明凝胶块经过热处理后,从SiO2基玻璃中析出了粒径为~30 nm的KTiOPO4纳米晶体,形成了透明KTiOPO4@SiO2纳米玻璃陶瓷;凝胶粒子的烧结致密化消除了大量不规则介孔,但形成了少量30 nm的球状孔;这种相对致密的玻璃陶瓷在可见光波段的光学透射率为64%左右。根据纳米结构数据,利用瑞利散射模型分析了纳米结构对玻璃陶瓷透明性的影响,结果表明,KTiOPO4晶体与SiO2玻璃相折射率之差是降低致密纳米玻璃陶瓷透明性的主要因素。  相似文献   
7.
以乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶和溶剂热法相结合的方法合成了Li2MnSiO4/C纳米复合正极材料。经过EDTA配位的锂锰硅前驱体在氩气中经过700℃煅烧后,产生为颗粒尺寸约为50nm的Li2MnSiO4/C纳米复合粉体。在0.1C=33mA·g-1进行充放电测试时,其首次充电和放电比容量分别为223和140mAh·g-1,第5次循环放电比容量仍为138mAh·g-1;电流密度升至0.2C=66mA·g-1时,在第20次循环的放电比容量仍可稳定在80mAh·g-1左右。这些结果表明,EDTA的配位作用可抑制杂相的形成,这种分散性相对较好的纳米复合粉体Li2MnSiO4正极材料表现出提高的循环稳定性。  相似文献   
8.
以粗糙铜箔为基底, 采用一步电沉积法获得Cu-Sn合金, X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相. 扫描电子显微镜(SEM)测试结果表明该合金表面由大量“小岛”组成, 且每个“小岛”上存在大量纳米合金粒子. 充放电测试结果表明, 以该合金为锂离子电池负极, 其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh•g-1. 电化学阻抗谱测试结果显示, Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧, 并详细分析了它们的变化规律.  相似文献   
9.
以氢气泡为动力学模板电沉积获得多孔铜,并通过热处理增强其结构稳定性.进一步将多孔铜作为基底通过电沉积制备Cu-Sn合金负极.XRD结果给出其组成为Cu6Sn5合金,扫描电子显微镜(SEM)观察到Cu6Sn5合金电极为三维(3D)多孔结构.充放电结果指出,Cu6Sn5合金电极具有较好的充放电性能,其首次放电(嵌锂)和充电(脱锂)容量分别为735和571 mAh·g-1,并且具有较好的容量保持率.运用电化学阻抗谱研究了Cu6Sn5合金电极在商业电解液中的界面特性.  相似文献   
10.
以乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶和溶剂热法相结合的方法合成了Li2MnSiO4/C纳米复合正极材料。经过EDTA配位的锂锰硅前驱体在氩气中经过700℃煅烧后,产生为颗粒尺寸约为50 nm的Li2MnSiO4/C纳米复合粉体。在0.1C=33mA·g-1进行充放电测试时,其首次充电和放电比容量分别为223和140 mAh·g-1,第5次循环放电比容量仍为138 mAh·g-1;电流密度升至0.2C=66 mA·g-1时,在第20次循环的放电比容量仍可稳定在80 mAh·g-1左右。这些结果表明,EDTA的配位作用可抑制杂相的形成,这种分散性相对较好的纳米复合粉体Li2MnSiO4正极材料表现出提高的循环稳定性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号