首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
聚吡咯/聚苯胺复合型导电聚合物防腐蚀性能   总被引:1,自引:0,他引:1  
薛守庆 《应用化学》2013,30(2):203-207
采用循环伏安法,在含吡咯和苯胺的0.3 mol/L草酸水溶液中制备了聚吡咯/聚苯胺(PPy/Pani)的复合型导电聚合膜。采用红外光谱、极化曲线、自腐蚀电位-时间曲线、扫描电子显微镜和电化学阻抗谱研究了共聚膜的防腐蚀性能。结果表明,在1 mol/L H2SO4中,PPy、Pani与不锈钢基体发生氧化还原反应,促进不锈钢表面发生钝化;当苯胺与吡咯浓度比为1∶3时,制备得到的复合型导电聚合膜所保护的不锈钢自腐蚀电流最小,自腐蚀电位最高,保护时间最长。PPy、Pani及其共聚膜在3.5%NaCl溶液中电化学阻抗谱表明,所制备的PPy、Pani及其共聚物膜与不锈钢基体发生氧化还原反应,使其表面钝化;当Cl-到达不锈钢表面时,破坏钝化膜导致不锈钢腐蚀。  相似文献   

2.
Schiff碱在金电极上的自组装膜   总被引:4,自引:0,他引:4  
本文利用自组装技术 ,首次将带有巯基的Schiff碱自组装到Au电极的表面 ;并利用扫描电子的显微电镜 (SEM )直接证实了Schiff碱的成膜 ,用循环伏安和交流阻抗技术对其膜的致密性等进行了分析 ,证实由Schiff碱形成的膜虽较疏松 ,但对异相电子转移起到了一定的抑制作用 ,本工作为利用自组装膜的方法研究Schiff碱提供了必要的实验理论参考  相似文献   

3.
分子结构对硫脲类化合物在铜表面自组装能力的影响   总被引:2,自引:0,他引:2  
王春涛  陈慎豪 《化学学报》2007,65(5):390-394
利用电化学阻抗谱和极化曲线研究了硫脲、烯丙基硫脲、苯基硫脲在金属铜表面上的自组装膜的质量和缓蚀效率, 并通过量子化学计算进一步研究了各种分子和金属铜的相互作用. 结果表明硫脲类分子在金属铜表面上的成膜能力顺序为: 苯基硫脲>烯丙基硫脲>硫脲, 并揭示了分子结构对硫脲类化合物在金属铜表面自组装影响的本质, 为进一步寻找和制备优良的缓蚀功能自组装膜提供理论依据.  相似文献   

4.
为了寻求新的自组装单分子膜体系,构建新的功能膜,研究了具备平面型的大环共轭硒杂环化合物-- 4,5-苯并苤硒脑(苯并[c]硒二唑,简称苤硒脑)在金表面的自组装单分子膜.通过X射线光电子能谱(XPS)和电化学手段对其进行表征.XPS研究结果表明,自组装形成单分子膜后,苤硒脑分子中Se3d结合能从57.4 eV下降到57.1 eV;表明硒杂环化合物是通过金硒键固定在金表面上的;电化学循环伏安法实验表明,金电极表面上自组装该有机硒后, Fe(CN)63-/4-的氧化还原峰几乎完全消失;以四硼酸钠为底液,测得该化合物自组装在金表面上时,其还原电位在-0.66 V,与在溶液中用裸金电极测得的还原峰电位基本一致.  相似文献   

5.
孔燕  张树永  李红娟 《化学学报》2004,62(17):1612-1616
通过在正十二硫醇自组装单层膜表面制备环氧树脂涂层的方法,在涂层/铜基体界面引入自组装界面层.采用X射线光电子能谱、电化学阻抗谱、阻抗-时间谱和相位角-时间谱等方法对硫醇自组装界面层及其对涂层腐蚀防护性能的影响进行了研究.结果表明,引入的自组装单层可极大地改善涂层的腐蚀防护性能.论文还对自组装单层改善涂层腐蚀防护性能的机理进行了探讨.  相似文献   

6.
通过共价键连接的方式在亲水性基底上制备了刚性功能分子3,4,9,10- NFDA1 四羧酸的自组装单分子膜,利用接解角、紫外-可见光谱、电化学循环伏安等方法对所制备的NFDA1 四羧酸自组装膜进行了表征,并初步研究了该自组装膜在ITO电极表面光电转换性质.  相似文献   

7.
自组装单分子膜及其表征方法   总被引:3,自引:0,他引:3  
自组装单分子膜的研究是近年来十分活跃的研究领域. 随着膜的应用领域的拓展 ,对膜的表征方法不断提出新的要求.本文综述了自组装单分子膜体系的类型和基底表面的 处理方法,着重从电化学、谱学、显微学以及表面润湿性等方面综述了近几年来自组装单分子膜的表征方法研究进展, 并对其发展前景作了展望.  相似文献   

8.
为阐明金属Cu在含稀丙基硫脲NaCl溶液中的腐蚀行为和规律,利用自组装技术在铜表面制备了烯丙基硫脲自组装膜,并在中性氯化钠体系中测试了该自组装膜的电化学行为和缓蚀效率.电化学测定表明,烯丙基硫脲自组装膜对阴极过程有明显的抑制,并且发现自组装膜的保护性质与腐蚀电位、烯丙基硫脲的浓度和溶液中Cl-浓度密切相关.烯丙基硫脲的...  相似文献   

9.
利用电化学技术及扫描隧道显微镜(STM),于0.1mol/LHClO4溶液中研究了Schiff碱N-aete-N在单晶Au(111)面上所形成的自组装单分子膜(SAMs)的电化学性质及结构.N-aete-N在Au(111)电极表面的吸附抑制了金的阳极氧化,同时使固/液界面双层电容明显降低.观察到N-aete-NSAMs的高分辨STM图像.N-aete-N分子在Au(111)表面上以(6×7)结构单胞呈二维有序排列,其表面浓度为5.5×10-11mol/cm2.  相似文献   

10.
利用循环伏安法和电化学交流阻抗谱研究了MBDA/Au,MBTA/Au,TBDA/Au,TBTA/Au修饰电极以及MBDA与DT混合自组装/Au、TBTA与DT混合自组装/Au修饰电极的覆盖度。结果表明这些自组装膜在金电极表面的覆盖度均比较高,达到99%以上;对同一类修饰电极,混合自组装膜的覆盖度高于单组分自组装膜的覆盖度,混合自组装体系的覆盖度随着DT比例的增加而增加;同类物质,长链化合物在金表面的覆盖度大于短链化合物,含二硫键的化合物与金电极的键合能力比含一个巯基的化合物键合能力强。  相似文献   

11.
溶胶-凝胶法制备改性TiO2纳米薄膜及其防腐蚀性能   总被引:1,自引:0,他引:1  
应用溶胶-凝胶法和浸渍提拉技术在316L不锈钢表面分别制备TiO2纳米膜和 B-Fe-Ce改性的TiO2纳米膜. 采用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)、拉曼光谱法和能量分散谱(EDS)对薄膜进行表征,通过电化学阻抗谱(EIS)和动电位阳极极化曲线的测试考察薄膜的耐蚀性及对不锈钢的保护性能. 结果表明:两种纳米薄膜均含锐钛矿型的TiO2纳米颗粒,纯TiO2纳米膜与改性后的纳米膜中颗粒直径分别约为15和10 nm. TiO2/316L不锈钢和 B-Fe-Ce-TiO2/316L不锈钢膜电极浸泡在0.5 mo.lL-1 NaCl溶液后,后者的电化学反应电阻较大,动电位阳极极化曲线的稳定钝化区较宽,击穿电位更高,说明改性的纳米膜的耐蚀性及其保护性能更好.  相似文献   

12.
Chitosan’s Schiff base derivatives are taking the attention of scientists as a promising biomaterial for various applications. In this study, O-functionalized aminated chitosan (O-F-Am-Ch) was coupled with 4,4-dimethyl amino-benzaldehyde and N-methyl-2-pyrrolidone to produce Schiff bases (I) and (II), respectively. The chemical and physical properties of the new derivatives were investigated by Fourier transform infrared (FT-IR) that show a significant band for C=C between 1400 and 1600 cm−1, thermal gravimetric analysis (TGA), which demonstrate an increase in the thermal stability of new derivatives than O-F-Am-Ch and scanning electron microscope (SEM) that indicates a slight increase in the rough structure of the surface. In addition, 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays that examined the antioxidant properties of the new Schiff bases. The biocidal activity against four different bacterial strains [two gram-negative (Pseudomonas aeruginosa and Escherichia coli) and two gram-positive (Bacillus cereus and Staphylococcus aureus)] demonstrates significant improvement of the inhibition activity compare to O-F-Am-Ch with more activity against Gram-negative bacteria than that against gram-positive bacteria.As an implanted alloy, 316L stainless steel is used as a temporary biomaterial in different countries without any pretreatment. Our study focused on further improving the alloy features by investigating the protection efficiency of O-F-Am-Ch and the synthesized Schiff bases for the 316L stainless steel surface against corrosion in simulated body fluid (SBF). The corrosion inhibition of these compounds was investigated using two electrochemical methods (potentiodynamic polarization technique and electrochemical impedance spectroscopy). The results suggested the formation of self-assembled monolayers (SAMs) of the compounds under investigation. Furthermore, they demonstrated a considerable dose-dependent inhibiting corrosion of 316L stainless steel in SBF, whereas the inhibition efficiency exceeds 77% at 1000 ppm for the Schiff bases II. In conclusion, the tested derivatives show promising properties to refine stainless steel for implant applications.  相似文献   

13.
Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316 L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) polymer brushes were formed by surface-initiated polymerization using SAMs of 16-phosphonohexadecanoic acid (COOH-PA) as the base. PFOA and PFS were effective in significantly reducing the surface energy and thus the interfacial wetting properties of SS316L. The SS316L control exhibited a surface energy of 38 mN/m compared to PFOA and PFS modifications, which had surface energies of 22 and 24 mN/m, respectively. PFOA thin films were more effective in reducing the surface energy of the SS316L compared to PFS polymer brushes. This is attributed to the ordered PFOA film presenting aligned CF(3) terminal groups. However, PFS polymer brushes were more effective in providing corrosion protection. These low-energy surfaces could be used to provide a hydrophobic barrier that inhibits the corrosion of the SS316L metal oxide surface.  相似文献   

14.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

15.
β-Cyclodextrin(β-CD) can be used for drug loading and release in biomedical application. β-Cyclodextrinsalicylate(β-CD-S) was synthesized by transesterification and then was electrodeposited on the surface of stainless steel(SS) by the anodic electrooxidation polymerization of the salicylate. 1H NMR spectrometry was used to determine the structure of β-CD-S. FTIR spectroscopy and XPS were applied to verifying the synthesized β-CD-S and the existence of the electrodeposited layer on the SS surface, respectively. Tafel plots and electrochemical impedance spectroscopy(EIS) technologies were used to estimate the corrosion resistance of β-CD-covered stainless steel. Electrochemical quartz crystal microbalance was applied to determining the drug loading of the stainless steel before and after its modification. E. coli was selected as a harmful microbe to evaluate the antibacterial properties of the stainless steel with the comparison of optical density values.  相似文献   

16.
Polyaniline(PANI)film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte.The potential sweep rates were changed to achieve the PANI film with different thickness and structures.Protective properties of the PANI film for corrosion of stainless steel in 3% NaC1 aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance,reflecting higher inhibition for corrosion of the stainless steel.  相似文献   

17.
Two series of Schiff base amphiphiles were prepared throughout condensation of benzaldehyde or anisaldehyde and three different fatty amines with various alkyl chain length; namely: dodecyl, hexadecyl and octadecyl amine. The chemical structures of the prepared Schiff bases were confirmed using elemental analysis, FTIR, and 1H-NMR spectra. The data of structural analysis for these compounds were confirmed the chemical structures and the purity of the synthesized amphiphiles. The synthesized Schiff base amphiphiles were evaluated as corrosion inhibitors for low carbon steel (mild steel) in various acidic media (HCl and H2SO4) using weight loss technique. The corrosion inhibition measurements of these inhibitors showed high protection of the low carbon steel alloys against corrosion process in the tested acidic media at different periods as well as they have good biocidel effectagainest SRB. The discussion was correlated the efficient corrosion inhibition of these inhibitors to their chemical structures.  相似文献   

18.
采用原位氧化技术调整316L不锈钢(SS316L)基体元素Cr和Ni在界面的浓度和分布, 形成了Ni和Cr富集改性界面. 应用计时电位技术, 通过Cr和Ni改性层催化草酸溶液中的苯胺单体在其表面吸附并聚合, 在SS316L表面沉积了附着力良好的聚苯胺(PANI)膜. 与SS316L相比, 表面富Ni-Cr的SS316L在涂覆PANI膜后, 在80 ℃ 0.5 mol/L H2SO4+5 mg/L F-溶液中阳极和阴极的腐蚀电位分别提高470和500 mV, 维钝电流均下降2~3个数量级; 在模拟质子交换膜燃料电池运行环境中, 经36000 s恒电位极化, 其阳极和阴极的腐蚀电流分别下降约1和2个数量级, 腐蚀速度分别约为6~9 和< 5 μA/cm2; 在1.4 MPa压力下, 聚苯胺膜层与Toray 060碳纸间接触电阻下降约250 mΩ·cm2. SS316L表面形成富Ni-Cr改性层并涂覆聚苯胺膜后, 其耐蚀性和导电性均明显优于原始SS316L, 这主要取决于富Ni-Cr改性层的结构、 组成和聚苯胺膜的厚度.  相似文献   

19.
The corrosion properties of carbon steel (CS), 304 stainless steel (304 SS), and pure titanium (Ti) are first studied in aluminum chloride–1-ethyl-3-methylimidazolium chloride ionic liquid (IL). An active-to-passive transition behavior was clearly observed for CS. The 304 SS exhibited the best stability among the materials; no considerable corrosion was recognized even in this high-chloride environment. In contrast, although Ti resists corrosion in ambient environments, it was not passivated in the IL and became severely corroded under an anodic applied potential. The material corrosion behaviors and mechanisms in the non-aqueous, low-oxygen, and high-halogen-containing IL are completely different from those in traditional aqueous solutions.  相似文献   

20.
Nanostructured metals have different mechanical, chemical, and physical behaviors in comparison with the microstructured ones. Numerous research studies demonstrated that the biological behavior of nanostructured metallic implants was improved significantly. Concerning the nanostructured metals, decreasing the corrosion rate and the releasing of hazardous ions from metallic implants, and thus increasing the biocompatibility of implants are due to improving the native oxide layer. In the present study, nanostructured 316L stainless steel (biomedical grade) was manufactured via equal channel angular pressing (ECAP) method. To do so, the 316L stainless steel (SS) was exposed to the ECAP operation for eight passes. The impact of the ECAP process on corrosion behavior of SS samples was evaluated through performing the electrochemical polarization corrosion tests in Ringer's solution. Scanning electron microscopy was employed to study the surface morphology of common SS and ECAPed SS sample after the electrochemical polarization tests. Moreover, the biological behavior of the samples was evaluated via cell culture using fibroblast cells. The corrosion test results revealed a substantial decrease of corrosion rate from 3.12 (coarse‐grained sample) to 0.42 μA cm?2 (for nanostructured). Furthermore, the cell proliferation in the interface of nanostructured sample and cell culture medium enhanced dramatically compared with the coarse‐grained one. The much better biological behavior of nanostructured SS sample in comparison with the coarse‐grained one is mostly due to the significant decrease of corrosion rate on the surface of SS samples, and the presence of much more chrome oxide on the surface of SS sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号