首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
范云场  张社利  陈梅兰  申屠超  朱岩 《分析化学》2010,38(12):1785-1788
以离子液体氯化1-辛基-3-甲基咪唑盐([Omim]Cl)的水溶液为萃取剂,采用加速溶剂萃取结合高效液相色谱法测定了蜜饯中苯甲酸、山梨酸、肉桂酸等有机酸类防腐剂,优化了加速溶剂萃取实验参数,最佳萃取条件为:离子液体浓度为0.1mol/L,萃取时间为5min,萃取温度为80℃。在最佳条件下,有机酸类防腐剂的检出限为0.4~27.7μg/L。将本方法用于蜜饯样品的检测,回收率为78.2%~113.9%。实验结果表明:离子液体-加速溶剂萃取法快速、高效。  相似文献   

2.
建立了加速溶剂萃取-固相萃取净化-气相色谱/三重四极杆串联质谱联用(ASE-SPE-GC-QqQ-MS/MS)法同时测定沉积物中28种多氯联苯(PCBs)和16种多环芳烃(PAHs)。对萃取、净化及仪器分析条件进行了优化。优化条件为:ASE萃取温度90℃,萃取时间6 min;净化小柱为硅胶-Florisil固相复合柱(填料自下而上为弗罗里硅土、0.7 g活化硅胶、1 g无水硫酸钠);洗脱溶液为丙酮-正己烷(1∶19,V/V)混合溶液,洗脱速率为0.6 mL/min。PCBs和PAHs在2~500μg/L和5~1000μg/L浓度范围内的线性相关系数(R2)分别为0.9987~0.9999和0.9939~0.9999;PCBs和PAHs方法检出限分别为0.001~0.08 ng/g和0.07~0.45 ng/g;定量限为0.003~0.25 ng/g和0.24~1.67 ng/g;实际样品平均加标回收率为95.6%~125.7%和70.4%~124.7%;方法相对标准偏差(n=6)为0.7%~6.4%和1.1%~12.8%。运用本方法对滇池入湖河口表层沉积物样品进行测定,该区域PCBs单体浓度为n.d.(未检出)~0.13 ng/g,PAHs单体浓度为0.79~131.12 ng/g。  相似文献   

3.
对固相萃取条件、加速溶剂萃取条件进行了优化,采用内标法结合超高效液相色谱-串联三重四极杆质谱仪进行测定,建立了环境水样、污泥中5种典型雌激素的测定方法。在最佳条件下,水样中5种雌激素的检出限为0.8 ng/L(除E3的检出限为1 ng/L),线性范围为3~1000 ng/L,相关系数在0.9566~0.9999之间;污泥样品中5种雌激素的检出限为0.5 ng/g(除E3的检出限为0.8 ng/g),线性范围为2.5~500 ng/g,相关系数在0.9224~0.9999之间。方法用于实际环境水样、泥样中痕量雌激素的测定。  相似文献   

4.
提出了加速溶剂萃取-液相色谱法测定运动地坪材料中16种多环芳烃含量的方法。优化的加速溶剂萃取条件如下:①萃取溶剂为丙酮-正己烷(1+1)混合液;②萃取温度为100℃;③静态萃取时间5min;④循环萃取2次。以Hypersil Green PAH色谱柱为分离柱,用水和乙腈以不同比例混合的溶液为流动相进行梯度洗脱,用紫外检测器和荧光检测器测定。16种多环芳烃的质量浓度均在5.0~500.0μg·L~(-1)内与其对应的峰面积呈线性关系,检出限(3S/N)为0.04~1.67μg·kg~(-1)。以空白样品为基体进行加标回收试验,所得回收率为70.9%~117%,测定值的相对标准偏差(n=6)为1.5%~6.7%。  相似文献   

5.
本文采用加速溶剂萃取技术进行样品前处理,通过对萃取溶剂、萃取温度、静态萃取时间的选择以及质谱条件的优化,研究建立了气相色谱-串联质谱法测定水产品中的苯并(a)芘的残留。结果表明:苯并(a)芘在2. 0~100. 0μg·L-1的标准曲线范围内线性关系良好,相关系数为0. 9994,方法检出限为0. 056 ng·g-1(干重),最低定量限为0. 18 ng·g-1(干重);两种添加量样品加标回收率平均值分别为93%和94%,相对标准偏差为12%和10%(n=7),该方法的准确度和精密度良好。二级质谱可有效排除水产品复杂基质的干扰,对实际水产品样品的测定也取得了较为满意的结果,本方法适合水产品中苯并(a)芘的痕量分析。  相似文献   

6.
建立了气相色谱法结合加速溶剂萃取技术测定岩石中痕量正构烷烃(C21~C40)的方法,对比了超声波萃取、加速溶剂萃取及索氏萃取3种提取方式,研究了提取溶剂及净化方式对正构烷烃测定的影响。实验结果表明:以丙酮-二氯甲烷(1∶1,V/V)为萃取剂,使用硅胶和中性氧化铝进行净化,各物质标准曲线相关系数均大于0.999,检出限为0.01~0.09μg/kg,对3个浓度的空白加标样进行回收实验和精密度实验,回收率在70.7%~91.7%之间,相对标准偏差(RSD)为1.8%~13%。方法可用于实际岩石样品中痕量正构烷烃的测定。  相似文献   

7.
研究了加速溶剂萃取(ASE)对沉积物中邻苯二甲酸酯类(PAEs)物质的提取效果,建立了快速溶剂萃取/气相色谱-质谱联用(GC/MS)检测沉积物中16种邻苯二甲酸酯类物质的方法。用正己烷和二氯甲烷混合溶剂作为提取溶剂,加速溶剂萃取法萃取沉积物中16种PAEs,再用Florisil层析柱净化,最后用GC/MS对净化后提取液中的PAEs进行定量分析。结果表明:当萃取剂为二氯甲烷-正己烷(1∶1,V/V),萃取温度为80℃时,萃取效率最高,16种PAEs的回收率稳定在81.2%~128.5%之间,相关系数≥0.99,检出限为0.12~0.98 ng/g,相对标准偏差为1.1%~10.8%。加速溶剂萃取法与传统索氏提取法相比,既提高了萃取效率同时又减少了有机萃取溶剂的用量。在检测实际样品时,同时加入3种内标指示剂对方法的性能进行了验证,3种内标的回收率分别为106.0%±18.8%,87.4%±10.8%和81.4%±14.5%,样品中16种PAEs的检出率为100%。前处理方法处理简单,定性与定量分析准确可靠。  相似文献   

8.
杨云  张卓旻  李攻科 《色谱》2002,20(5):390-394
 建立了微波辅助萃取 (MAE) /气相 质谱联用法 (GC MS)测定蔬菜样品中二嗪磷、对硫磷、水胺硫磷的分析方法 ,研究了不同溶剂的萃取效率。选择二氯甲烷为萃取溶剂 ,采用二因素三水平的正交设计实验优化了萃取溶剂体积和萃取时间。方法的线性范围分别为二嗪磷和对硫磷 4ng/ g~ 40 0ng/ g、水胺硫磷 2 0ng/ g~ 40 0ng/ g,检出限分别为二嗪磷 0 2 9ng/g、对硫磷 1 70ng/g、水胺硫磷 2 30ng/g。测定 2 0 0 0ng/g和 50 0ng/g加标蔬菜样品 ,回收率为 72 2 %~ 1 0 2 0 % ,RSD为 1 5 %~ 1 1 0 %。。  相似文献   

9.
建立了同时加速溶剂萃取和净化、气相色谱-离子阱二级质谱检测植物中13种有机磷酸酯阻燃剂/增塑剂的分析方法。样品放入以硅胶和活性炭作为在线净化填料的萃取池中,在萃取溶剂为正己烷-丙酮(1∶1,体积比)、萃取温度100℃、静态萃取时间10 min、循环2次的条件下进行加速溶剂萃取,萃取液浓缩后经DB-5MS(30 m×0.25 mm×0.25μm)气相色谱柱分离,选择反应监测模式(SRM)检测,以保留时间和特征离子对定性,内标法定量。结果表明,该方法具有较好的准确度和精密度,13种有机磷酸酯在3个加标水平下的回收率为76.9%~113.0%,相对标准偏差为2.0%~14.6%,方法检出限为0.79~2.27 ng/g,方法定量下限为2.65~7.59 ng/g。该方法简便、快速、准确,可用于植物中13种有机磷酸酯的测定。  相似文献   

10.
建立了加速溶剂萃取-硅胶固相萃取净化-气相色谱/质谱同时检测地表水中15种有机氯农药(OCPs)和82种多氯联苯(PCBs)的方法.对影响OCPs和PCBs回收率的主要因素进行优化,得出最优的萃取条件:3次静态萃取循环,100℃的萃取温度,丙酮/正己烷(1∶1,V/V)为萃取液,静态萃取10 min.在最优条件下,15种OCPs和82种PCBs在加标水溶液中的回收率分别为70.9%~130%和52.5%~89.1%.日内和日间相对标准偏差分别为1.7%~16.1%和2.4% ~33.3%.OCPs和PCBs混合标样在10~ 800 μg/L范围内线性相关系数(R2)均大于0.995.OCPs和PCBs方法检测限分别为0.13 ~0.38 ng/L和0.10 ~0.32 ng/L.相比于传统萃取方法,本方法回收率高、萃取时间短、试剂用量少.应用本方法测得北京城区地表水中OCPs和PCBs的含量范围分别为n.d.~ 3.45 ng/L和n.d.~4.88 ng/L.  相似文献   

11.
江丰  余婷婷  李珉  荣茂  韩莉  宋哲  朱晓玲 《色谱》2020,38(7):853-860
建立了加速溶剂萃取同步净化-同位素内标-气相色谱-高分辨质谱同时测定水产品中32种多氯联苯含量的方法。通过在加速溶剂萃取仪中加入2 g无水硫酸钠、1 g弗罗里硅土、50 g中性氧化铝作为吸附剂实现同步净化的效果,萃取溶剂为二氯甲烷-正己烷(1:1,v/v),萃取温度为100℃,循环2次。萃取结束后分别用0.5 mL浓硫酸净化两次,净化液浓缩定容后,采用气相色谱-高分辨质谱测定,同位素内标法定量。32种多氯联苯在0.1~20 μg/L范围内平均相对响应因子(RRF)的相对标准偏差(RSD)值(n=7)均小于15%,定量限(S/N=10)为0.3~1.9 ng/kg。在草鱼和海鲈鱼空白基质中做加标回收试验,添加水平为5、20和50 ng/kg,得到的平均回收率为71.9%~119.0%(n=6),RSD为3.5%~19.6%。该方法背景干扰低,灵敏度高,重现性好,回收率稳定,适用于水产品中多氯联苯的检测。  相似文献   

12.
建立了太子参中乙草胺、丁草胺和S-异丙甲草胺的加速溶剂萃取-气相色谱/质谱测定的分析方法。对提取溶剂、萃取温度、净化材料、不同冲洗体积和静态萃取时间、循环次数等实验条件进行了优化。用HP-5MS弹性石英毛细管柱经柱程序升温技术分离,并用质谱检测器检测,内标法计算含量。本方法测定太子参中乙草胺、丁草胺和S-异丙甲草胺的检出限分别为0.16 ng/g、0.18 ng/g和0.05 ng/g,精密度分别为2.6%、3.9%和3.1%,回收率为80.2%-104.1%。所测样品不含上述3种除草剂残留。本方法简便、干扰小、检测效果好,可用于太子参药材中此类除草剂残留的分析。  相似文献   

13.
魏丹  国明  吴慧珍  张菊 《色谱》2020,38(8):945-952
建立了加速溶剂萃取(ASE)、磁固相萃取净化(MSPE)、气相色谱-质谱(GC-MS)测定土壤中多环芳烃和有机氯残留的方法。ASE萃取溶剂为丙酮-正己烷(1:1,v/v),萃取温度为100℃,萃取压力为11.032 MPa,加热时间为5 min,静态萃取时间为5 min,循环萃取3次,冲洗体积为60%萃取池体积,氮气吹扫100 s。然后采用室温制备法自制ZIF-8/nZVI磁性材料用于净化萃取液,将净化液浓缩定容后进行GC-MS测定。多环芳烃和有机氯的线性范围为5~200 μg/kg,线性相关系数(r2)均大于0.99;目标物的检出限(LOD,S/N=3)为0.04~1.21 μg/kg。所建方法成功用于土壤样品中16种多环芳烃和23种有机氯的测定,在3个加标水平下得到的加标回收率为63.9%~112.1%,相对标准偏差(RSD)为0.4%~26.2%。研究结果表明,该方法具有灵敏度高、重现性好、回收率高等特点,适用于土壤中多环芳烃和有机氯残留的检测。  相似文献   

14.
建立了同时测定土壤中7种多溴联苯醚(PBDEs)的超声微波协同萃取/气相色谱测定方法.考察了萃取溶剂的种类和用量、微波功率、萃取时间等因素对模拟土壤中PBDEs回收率的影响,得到了最佳萃取条件:萃取剂为50 mL正己烷-丙酮(1:1),微波辐射功率为90W,萃取时间为10 min.在最佳条件下,PB-DEs在10~40...  相似文献   

15.
An analytical procedure based on extraction by accelerated solvent extraction (ASE) followed by gas chromatography–mass spectrometry (GC/MS) analysis has been developed for the determination of particulate polycyclic aromatic hydrocarbons (PAHs) from large-volume water samples (20 L). The effect of temperature and number of cycles on the efficiency of ASE was investigated: the best results were obtained by using a temperature of 100°C and one static cycle. A mixture of hexane/acetone 1:1 (v/v) was used as extraction solvent. Mean total method recovery under optimized conditions was 85%. The developed methodology was applied to the analysis of suspended particulate matter from Lake Maggiore waters (north of Italy). Mean PAH concentrations in suspended particulate matter from Lake Maggiore ranged from 0.2 ng L−1 for anthracene to 18.7 ng L−1 for naphthalene.  相似文献   

16.
A method was developed to couple an accelerated solvent extraction system (ASE) with high performance liquid chromatography (HPLC) for the analysis of PAH in soil samples. The resolution of HPLC is well maintained while the advantages of ASE, fast extraction, less solvent consumption and ease of operation, are well expressed. The precision and accuracy of this method are verified by a series of analyses of reference material, and the precision of retention from multiple injection indicates minimum loss of chromatographic resolution by the interface of this technique. Detection limits for the studied PAH range from 0.07 ng/Kg to 0.21 ng/Kg with a fluorescence detector.  相似文献   

17.
The Extracting Syringe (ESy), a novel membrane-based sample preparation technique directly coupled as an autosampler to gas chromatography, has been employed for the analysis of organochlorine pesticides (OCPs) in raw leachate water. The ESy has also been applied for extraction of OCPs from contaminated soil samples and its performance has been compared to liquid-solid extraction (LSE) and accelerated solvent extraction (ASE). Extraction of 3-mL leachate sample at the optimised conditions resulted in enrichment factors from 32 (Endrin aldehyde) to 242 (Endrin) and detection limits from 1 to 20 ng/L. The inter-day and intra-day repeatability (% RSD) at 100 and 500 ng/L were <6% and <24%, respectively. The relative recovery at 100 and 500 ng/L ranged from 68% (Aldrin) to 116% (Endrin aldehyde); except Heptachlor that showed 51 and 60%, respectively. The ESy extraction of the slurry-made soil samples revealed occurrence of Endosulfan I (18.2 microg/g soil), 4,4'-DDE (2.6 ng/g soil), Endosulfan II (8.7 microg/g soil) and Endosulfan sulfate (1.1 microg/g soil); showing good agreement with LSE results. The total ESy consumption of organic solvents was 4.2 mL from which only 0.6 mL n-undecane was used during the extraction step (7 microL for the extraction per se), while in the LSE and ASE, it was 420 and 18.1 mL, respectively. The ESy extraction time (0.5 h) was comparable to the ASE time (0.6 h); and the time required for the LSE was 3.75 h. To sum up, the ESy has shown its competency to LSE and ASE technologies, demonstrating its applicability for environmental analysis of organic pollutants, towards green techniques for green environment.  相似文献   

18.
以Na4EDTA为络合剂,以五氟苄基溴为衍生试剂,采用快速溶剂萃取仪萃取,同时实现土壤酸性除草剂的络合萃取在线衍生,并以气相色谱-质谱(NCI源)进行检测。对络合条件、衍生条件、萃取条件、离子源选择进行了优化。方法的回收率为75%~95%、相对标准偏差为6.7%~13%、检测限2.8~8.4μg/Kg。  相似文献   

19.
张兵  吴嘉嘉  刘国瑞  高丽荣  郑明辉 《色谱》2010,28(5):456-459
建立了土壤样品中指示性毒杀芬Parlar No.26 (P26)、Parlar No.50 (P50)和Parlar No.62 (P62)的同位素稀释-气相色谱-串联质谱(ID-GC-MS/MS)的分析方法。土壤样品使用压力溶剂萃取装置(PLE)提取,以丙酮-正己烷(1:1, v/v)混合溶液为提取溶剂;提取液依次经由多层酸性硅胶柱和活化硅胶柱净化;洗脱液经氮吹浓缩至20 μL后,利用GC-MS/MS的多反应监测(MRM)模式进行定性和定量。结果表明本方法可对样品中的P26、P50和P62进行分析,相对标准偏差(RSD)小于11%,回收率可以达到55%~110%;P26、P50和P62的仪器检出限分别为3.0、3.0和6.0 pg。将该方法用于某地区农田表层土壤中3种指示性毒杀芬的检测,其中P26的含量为0.17 ng/g、P50为0.08 ng/g、P62为0.09 ng/g。此方法适用于土壤样品中指示性毒杀芬的分析。  相似文献   

20.
The comparison of four extraction techniques for isolation of five native and one labelled steroid oestrogens from sediment was described. The three conventional extraction techniques Soxhlet warm extraction (SWE), accelerated solvent extraction (ASE), microwave-assisted extraction (MAE) and a promising technique QuEChERS were tested for isolation of low environmentally relevant oestrogen concentrations using different extraction conditions. The least expensive and time-consuming method QuEChERS provided the best extraction recoveries (53–84%) from all techniques. MAE achieved the highest recovery from conventional techniques for less polar oestrogens using dichloromethane: acetone 3:1 mixture as an extraction solvent (50–71%), but for extraction of the whole group of oestrogens including more polar estriol acetone or methanol must be used. ASE provided higher extraction recoveries using dichloromethane at 60°C (53–74%) for less polar oestrogens. However, the repeatability of results was unsatisfactory and recoveries using other extraction conditions were lower than for MAE. The most time-consuming SWE achieved the worst extraction recoveries and for isolation of low oestrogen concentrations from sediments, it is completely unsuitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号