首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
基于高效液相色谱和电感耦合等离子体质谱联用技术,建立测定环境水样中Cr(Ⅲ)和Cr(Ⅵ)的分析方法。结果表明Cr(Ⅲ)和Cr(Ⅵ)质量浓度在1~100μg/L范围内线性良好,方法检出限均为0.07μg/L,不同浓度(2,50,90μg/L)测试相对标准偏差在1.1%~6.3%之间。所建立方法无需其他前处理就可用于高盐度水样中两种形态铬分离分析。C18固相萃取小柱可高效吸附废水样品中的有色物质,但对其中的Cr(Ⅲ)和Cr(Ⅵ)没有吸附,可用于废水样品脱色处理。  相似文献   

2.
合成了改性β-环糊精修饰的氧化硅复合材料(SiO_2@CD),并将其作为固相萃取材料,研究了该材料在重金属离子Cr(Ⅵ)的形态分析中的应用。结果表明,在pH 2.5的缓冲溶液中,材料能定量吸附Cr(Ⅵ),而几乎不吸附Cr(Ⅲ)。在优化条件下,材料对Cr(Ⅵ)的富集倍数为25,饱和吸附容量为16.8 mg/g。建立了SiO_2@CD固相萃取-火焰原子吸收联用测定Cr(Ⅵ)形态的新方法,方法的检出限为0.75μg/L。该方法用于检测汽水和茶水样品中Cr(Ⅵ),加标回收率为97.8%~106.3%,结果满意。  相似文献   

3.
采用自制固相萃取材料聚乙烯亚胺胺化的接枝甲基丙烯酸缩水甘油酯的聚四氟乙烯(PTFE-g-GMA-PEI)纤维填充微柱预富集和流动注射(FI)与电感耦合等离子发射光谱仪(ICP-OES)联用测定样品中痕量Cr(Ⅵ)和Cr(Ⅲ)。对Cr(Ⅵ)和Cr(Ⅲ)的富集与洗脱条件进行优化,并给出Cr(Ⅲ)离子的分析特性。结果表明,该法测定的Cr(Ⅲ)离子富集倍数为30,样品通量为72h-1,检出限为2.2μg/L,RSD为1.2%(50μg/L,n=9),其线性范围为2~500μg/L。该法成功用于环境水样中铬的形态分析,其加标回收率为90~104%。  相似文献   

4.
《广州化学》2017,(6):41-45
建立了一种磁性分子印迹固相萃取和气相色谱相结合测定饮料中咖啡因含量的新方法。该法自制磁性分子印迹固相萃取材料作为萃取剂,将其分散在样品溶液中,利用外部磁场使磁性萃取剂与溶液快速分离,结合分子印迹技术,提高对分析物的选择性吸附,排除了样品中各类干扰杂质。在最佳条件下进行分析,该方法的检出限为0.05μg/m L(S/N=3),线性范围为0.1~15μg/m L,线性相关系数(R~2)为0.999 1,本法可用于可口可乐、百事可乐、红牛和黑卡六小时试样中咖啡因含量的测定。  相似文献   

5.
微乳相萃取分离富集-原子吸收光谱法分析铬形态   总被引:1,自引:0,他引:1  
建立了一种微乳相萃取分离-石英双缝管原子捕集火焰原子吸收光谱法(STAT-FAAS)分析环境水样中铬形态的新方法。该方法中,Cr(Ⅲ)与8-羟基喹啉反应形成的疏水性配合物,经萃取进入微乳相,Cr(Ⅵ)留在水溶液中,从而实现Cr(Ⅲ)与Cr(Ⅵ)的相互分离。Cr(Ⅵ)含量的测定通过过氧化氢溶液将Cr(Ⅵ)还原为Cr(Ⅲ),按同样方法分析。实验对微乳相萃取的主要影响因素进行了优化。结果表明,经优化后实验条件为:平衡温度80℃,平衡时间10min,溶液酸度pH=9.0,NH3-NH4Cl缓冲溶液用量2.0mL,8-HQ用量0.05mmol;TritonX-100微乳液组成:m(TritonX-100):m(正戊醇):m(正己烷):m(水)=3.0:15:1.5:4.0。在此条件下,萃取的富集倍数达到25倍(50mL起初样品溶液/2mL最终测定液),线性范围为2.5~500μg/L,检出限为0.62μg/L,相对标准偏差(RSD)为3.8%(n=10,c=10μg/L)。本方法已成功地应用于电镀废水中铬形态分析。  相似文献   

6.
以交联羧甲基淀粉(CCMS)为吸附剂,悬浮体进样-石墨炉原子吸收法(GFAAS)测定环境水样中Cr(Ⅲ)和Cr(Ⅵ)形态。研究了溶液pH值、吸附时间、溶液体积、共存离子等对CCMS吸附Cr(Ⅲ)和Cr(Ⅵ)的影响。结果表明:在pH=6.0时,吸附15 min,CCMS可以选择性地吸附Cr(Ⅲ),对Cr(Ⅵ)不吸附,从而实现Cr(Ⅲ)和Cr(Ⅵ)的分离。将吸附Cr?的CCMS加0.1%的琼脂制成悬浮体直接进石墨炉检测,用1 mL 1%盐酸羟胺将Cr(Ⅲ)还原成Cr(Ⅵ),测总铬。方法对Cr(Ⅲ)的检出限为0.044μg/L,相对标准偏差(RSD)为10.4%(初始浓度CCr(Ⅲ)=1.0μg/L,n=11),富集倍数为50倍。将本方法应用于环境标准样品的测定,测得结果与标准值相符。  相似文献   

7.
通过两步接枝法制备了一种季铵型离子交换纤维PP-g-DMAEMA-Br,将其用作纤维管内固相微萃取方法中的吸附剂,并结合紫外-可见分光光度法富集检测水溶液中痕量的Cr(Ⅵ),开发了一套预富集检测水中痕量Cr(Ⅵ)的新工艺。研究了样品流速,p H值对纤维微柱吸附水中痕量Cr(Ⅵ)的影响,以及洗脱剂类型、浓度、体积、洗脱剂流速对Cr(Ⅵ)洗脱回收率的影响。在最佳条件下,该方法对于Cr(Ⅵ)最低检测限为0.2μg/L,富集因子为100,富集效率为98.06~101.26%,时间为15min左右。该方法简单快速,灵敏度高,重复性好,可以和便携式仪器连用,适用于在线检测、尤其是偏远地区的实际样品测定。  相似文献   

8.
建立了全自动固相萃取–气相色谱–质谱联用测定水中苯并芘的方法。优化了全自动固相萃取条件,选择C8固相萃取柱萃取水样品中的苯并芘,样品中加入甲醇以增强苯并芘在萃取柱上的保留能力,采用正压大体积六通道同时进样,进样体积为1 000 m L,进样流量20 m L/min,使用二氯甲烷为洗脱溶剂,浓缩至0.5 m L。水中苯并芘的质量浓度在10~200μg/L范围内与其质谱响应值线性关系良好,相关系数为0.995,检出限为2 ng/L。在20~200μg/L加标水平上,苯并芘回收率为85.0%~94.5%,测定结果的相对标准偏差均小于6%(n=6)。该方法操作简单、测定结果准确,可用于水中苯并芘的测定。  相似文献   

9.
采用基质固相分散-超快速液相色谱法测定了山楂片中的苏丹红染料,基质固相分散萃取的最佳条件为:0.45 g硅胶分散剂,6 mL乙酸乙酯作为洗脱剂,样品与分散剂质量比为1∶3。乙腈-水为流动相,流速:0.3 mL/min,进样量:10μL,柱温:30℃,梯度洗脱,4种苏丹红化合物回收率在86.1%~108.3%之间;RSD在2.3%~9.8%之间。测定苏丹红的线性范围为0.01~2.5 mg/kg(苏丹红Ⅰ,Ⅱ和Ⅲ),0.025~2.5 mg/kg(苏丹红Ⅳ),检出限为4.2~8.9μg/kg,检出限优于国标方法,可满足实际样品分析的要求。  相似文献   

10.
建立了地表水中痕量Pb~(2+)的离子印迹聚合物固相萃取/微波等离子体发射光谱测定方法(IISPE/MP-AES)。以Pb~(2+)为模板离子,采用皮克林乳液聚合法制备离子印迹聚合物微球(IIPMs),填装成固相萃取柱对样品中Pb~(2+)进行富集。IIPMs的平均粒径为26.6μm,表面分布有丰富的具特异性吸附性能的多孔状结构,等温吸附实验表明其对Pb~(2+)的吸附属于单分子层吸附。通过对IIPMs固相萃取柱的性能及最优富集条件进行考察,样品富集后采用5%HNO_3洗脱,IIPMs固相萃取柱对水中Pb~(2+)的最大富集倍数为250倍,可重复利用12次以上;在最优萃取条件下,方法的检出限为0.26μg/L,实际地表水样的加标回收率为92.4%~98.8%,相对标准偏差(RSD)不大于4.1%。IIPMs固相萃取与MP-AES联用可用于地表水中痕量Pb~(2+)的准确测定。  相似文献   

11.
研究制备了CI/SiO2/PDMS固相萃取剂,建立了分散固液微萃取在线热洗脱原子荧光联用测定矿泉水中痕量汞的方法。方法使用分散剂将CI/SiO2/PDMS均匀分散于样品溶液中,吸附并富集Hg2+与DDTC形成的Hg-DDTC螯合物。用磁子吸附收集固相萃取剂,并置于石英管中。利用电磁感应加热技术,在线加热洗脱,原子荧光法定量。方法的富集倍数达30倍,检出限为6.0ng/L;精密度RSD为3.8%(n=11,ρ=0.1μg/L)。  相似文献   

12.
建立以NH4NO3为流动相,高效液相色谱–电感耦合等离子体质谱联用(HPLC–ICP–MS)技术测定印刷油墨中可迁移的Cr(Ⅲ)和Cr(Ⅵ)的方法。样品以0.07 mol/L的pH 1.1~1.3盐酸溶液为萃取剂,于(937±2)℃水浴振荡萃取1 h,然后静置1 h,用0.45μm过滤头过滤后取1.0 mL滤液,加入1.0 mL 0.07 mol/L氨水及8.0 mL缓冲液在50℃水浴中静置50 min,取出样品溶液,冷却至室温后用HPLC–ICP–MS仪分析测试。Cr(Ⅲ)和Cr(Ⅵ)的质量浓度在0.04~0.20μg/L范围内与色谱峰面积呈良好的线性关系,线性相关系数分别为0.999 1和0.999 8,方法检出限分别为0.007 mg/kg和0.002 mg/kg。加标回收率为88.2%~114.6%,Cr(Ⅲ)和Cr(Ⅵ)测定结果的相对标准偏差分别为2.7%和3.5%(n=10)。该方法快速、准确,适用于测定基体复杂的油墨中可迁移Cr(Ⅲ)和Cr(Ⅵ)。  相似文献   

13.
采用静电纺丝法制备尼龙6纳米纤维膜,结合固相膜萃取-高效液相色谱法测定了矿泉水中的双酚A。对洗脱溶剂及其体积、进样速度、样品体积、样品pH值、尼龙6纳米纤维膜的用量、及其活化方式和使用次数等影响因素进行了研究。结果表明:10mL样品调至pH8.0后,以3mL/min流速通过1.5mg尼龙6纳米纤维膜,300μL甲醇即可将膜上吸附的双酚A完全洗脱,每张膜至少可重复使用6次。在此最优化条件下,方法的线性范围为0.20~20.0μg/L;检出限为0.15μg/L,膜内和膜间的相对标准偏差均小于4.5%(n=6)。本方法应用于6种不同品牌的矿泉水中双酚A的分析测定,在1.0μg/L加标水平下,测得回收率为95.0%,双酚A测得浓度低于0.30μg/L。与固相萃取方法相比,本方法高效、环保,表明尼龙6纳米纤维膜是极具潜力的萃取介质  相似文献   

14.
建立了一种应用顶空固相微萃取(HS-SPME)气相色谱质谱(GC-MS)联用分析测定茶叶中香叶醇(Geraniol)的方法。通过考察萃取头型号、茶水比、萃取温度、萃取时间、解吸附温度和解吸附时间等影响因素,确定最佳HS-SPME条件为:DVB/CAR/PDMS型号萃取头、茶水比1:6、萃取温度60℃、萃取时间60 min;气相色谱最佳解吸附条件为:进样口温度240℃、解吸附时间3 min。在优化条件下茶叶样品中的香叶醇得到较好的提取,GC-MS检测线性范围为0.08~16.50μg/g,检出限(S/N≥3)为9.42×10-3μg/g,空白基质加标回收率为89.8%~105.9%。在对24种茶样进行检测后,香叶醇含量范围为0.13~11.85μg/g,相对标准偏差为1.8%~9.7%。方法能满足茶叶样品中香叶醇分析测定的需要。  相似文献   

15.
以1-(2-噻唑偶氮)-2-萘酚(TAN)为络合试剂,非离子表面活性剂Triton X-114为萃取剂,浊点萃取同时富集Cr(Ⅲ)和Cr(Ⅵ),并于RP-C18柱上,用含4.5 mmol/L十六烷基三甲基溴化铵(CTMAB)和0.03mol/L HAc-NaAc缓冲溶液(pH5.5)的甲醇-水(体积比69∶31)溶液为流动相,对富集的Cr(Ⅲ)和Cr(Ⅵ)进行高效液相色谱快速分离、测定。对浊点萃取时溶液的pH值、TAN和Triton X-114的用量等影响因素进行了考察。在优化实验条件下,对100μg/L的Cr(Ⅲ)和Cr(Ⅵ)进行7次平行测定,保留时间的相对标准偏差分别为1.2%和0.9%,峰面积的相对标准偏差分别为4.7%和2.7%。Cr(Ⅲ)和Cr(Ⅵ)的线性范围均为50~5 000μg/L,检出限分别为7.5、3.5μg/L。大部分离子不干扰测定,该方法具有较高的灵敏度,可用于湖泊表层沉积物中铬形态的分析。  相似文献   

16.
研究了嵌段分子筛聚合材料P123-SH萃取分离-石墨炉原子吸收光谱法对尿中痕量铬的形态分析方法,探讨了嵌段分子筛聚合材料P123-SH吸附铬的原理和最佳条件。在pH 7.0、常温下,Cr3+和Cr(Ⅵ)被很好的分离,且Cr3+可被该材料定量吸附,其吸附容量为6.15 mg/g。吸附的Cr3+可用2 mol/L的HCl洗脱,用石墨炉原子吸收法测定洗脱下来的Cr3+,往溶液中加入0.1%抗坏血酸将Cr(Ⅵ)还原为Cr3+测总铬,Cr(Ⅵ)含量为总铬减去Cr3+,方法测定Cr3+的检出限为0.011μg/L(3σ,n=11),线性范围为0.1~10μg/L,加标回收率在94%~106%之间,对0.50μg/L的Cr3+溶液平行测定7次,RSD为3.6%。方法可应用于生物样品和环境样品中痕量铬的形态分析。  相似文献   

17.
建立快速溶剂萃取–高效液相色谱法测定禽蛋中磺胺嘧啶残留的方法。用单因素和正交试验对禽蛋中磺胺嘧啶的萃取条件进行优化,确定了最佳萃取条件:以甲醇为萃取剂,在130℃循环萃取4次,冲洗体积分数为80%,萃取时间为25 min。色谱柱为Hypersil ODS2柱(4.6 mm×250 mm,5μm),流动相为甲醇–0.5%冰乙酸(25∶75),流量为1.0 m L/min,检测波长为265 nm。磺胺嘧啶的质量浓度在0.025~0.500 mg/m L范围内与色谱峰面积呈良好的线性关系,相关系数r=0.999 5,检出限为0.5μg/kg。加标回收率在83.0%~88.2%之间,测定结果的相对标准偏差为2.2%(n=9)。方法的精密度、准确度和基质效应均符合禽蛋样品检测要求,可用于禽蛋中磺胺嘧啶含量的测定。  相似文献   

18.
建立盘式固相萃取–超高效液相色谱–串联质谱(UPLC–MS–MS)快速测定环境水样中3种微囊藻毒素(MCs)的方法。环境水样经过盘式固相萃取柱净化,采用Waters BEH C_(18)色谱小柱,以乙腈–0.2%甲酸水溶液为流动相,梯度洗脱分离后,UPLC–MS–MS多级监测正离子模式下外标法进行定性定量分析。3种微囊藻毒素在0.05~10.0μg/L范围内呈现良好线性关系,相关系数均大于0.999 4,方法检出限为0.02 ng/L。对同一环境样品进行0.1,1.0,5.0μg/L 3种浓度的加标回收试验,平均回收率为82.8%~108.8%,测定结果的相对标准偏差为2.1%~10.1%(n=6)。该方法快速、灵敏、准确,可有效应用于环境水样中微囊藻毒素的监测。  相似文献   

19.
采用高效液相色谱–原子荧光法对土壤中的砷形态进行分析,以了解其对土壤的污染程度。用1 mol/L磷酸–0.5 mol/L抗坏血酸混合提取剂对污染土壤样品进行三步微波提取,用高效液相色谱–原子荧光联用仪测定砷形态含量。As(Ⅲ)和As(V)标准工作曲线的线性范围均为8~100μg/L,线性相关系数(r~2)分别为0.999,0.996,检出限分别为0.11,0.72μg/L。As(Ⅲ),As(V)测定结果的相对标准偏差分别7.6%和9.1%(n=11),加标回收回收率在82.2%~98.3%之间。多数土壤中砷形态以As(V)为主,As(Ⅲ)含量较低。该方法对土壤中的砷提取效果好,测定结果可靠,可为土壤砷污染的修复提供技术支撑。  相似文献   

20.
徐宁  樊静  贾录阳  张洁 《分析化学》2012,(2):257-262
利用两步反应法制备了溴联苯三酚红功能性硅胶(BPRSG),并通过静态平衡方法研究了该功能性硅胶对多种性质相近的金属离子的选择性吸附性能,考察了溶液pH值和搅拌时间对Hg?吸附率的影响。结果表明,在pH=7.0时,该固相萃取剂对Hg(Ⅱ)有特异的选择性吸附,可以实现与Pb(Ⅱ),Co(Ⅱ),Mn(Ⅱ),Zn(Ⅱ),Cu(Ⅱ),Cd(Ⅱ),Ni(Ⅱ)等金属离子的选择性分离,对Hg?的吸附平衡时间为30 min;最大吸附容量为4.80 mg/g。将该吸附剂制成微型固相萃取柱,用动态平衡法研究了柱流速、洗脱剂种类、洗脱速度和各种干扰离子对分离富集Hg(Ⅱ)的影响。在优化条件下,微柱对Hg?的最低富集浓度为10μg/L,富集倍率为170倍,柱容量为0.65 mg/g。20种常见离子不干扰Hg?的吸附,用1.0 mol/L醋酸即可洗脱Hg(Ⅱ),柱子可重复使用。将微柱用于环境水样中Hg?的固相萃取,回收率在95.5%~98.0%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号