首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
研究了一种光响应偶氮聚电解质(PEAPE)在不同pH值条件下的自组装,重点讨论了pH值对静电逐层自组装以及对光响应性能的影响.研究表明,在所研究的pH范围内,pH值越低,越有利于生成吸光度高的自组装膜,对应的自组装膜厚度也越大.红外光谱分析表明,偶氮聚电解质在不同pH溶液中存在不同的电离情况.pH值越低,用于自组装的溶液中的聚合物链上的电荷数越少,链构象越卷曲.解释了不同pH值条件下自组装膜吸光度和厚度差别的原因.  相似文献   

2.
用偶氮聚电解质上的偶氮苯基团作为“探针” ,研究了侧链偶氮聚电解质聚 {丙烯酸 2 [4 (4′ 乙氧基苯基偶氮 )苯氧基 ]乙酯 co 丙烯酸 }(PEAPE)在水中的H 聚集及其对光响应性的影响 .研究发现 ,与在DMF溶液的紫外吸收光谱相比 ,偶氮聚电解质在水中的紫外吸收λmax 发生明显蓝移 ,表明在水溶液中偶氮生色团形成了H 聚集体 .溶解在DMF H2 O混合溶剂中的上述偶氮聚电解质也存在部分H 聚集 ,H 聚集程度与水和DMF的比例有关 .H 聚集体的形成使光异构化速率明显减慢 ,异构化效率显著降低 .同时 ,其光异构化动力学不符合一级指数衰减规律 ,说明该过程同时包含‘孤立的’偶氮生色团的光异构化反应和H 聚集体的光致解聚集  相似文献   

3.
偶氮聚电解质的静电逐层自组装是实现偶氮聚合物功能性的重要手段,是制备诸如光存储材料、光开关材料和非线性光学材料等的新途径.因此,光响应性偶氮聚电解质的静电逐层自组装已引起了人们的广泛关注.静电逐层自组装通常在水溶液中进行,即通过基材在在水溶液中的交替浸渍和逐层  相似文献   

4.
两种侧链偶氮聚电解质自组装膜中生色团取向研究   总被引:1,自引:0,他引:1  
用偏振紫外光谱研究了两种侧链偶氮聚电解质静电逐层自组装膜中偶氮生色团的初始取向 .讨论了不同的组装条件对自组装膜中偶氮生色团取向的影响 .进一步探讨了偶氮聚电解质自组装膜的结构特点 .研究表明 ,侧链偶氮聚电解质自组装膜中的偶氮生色团存在一定程度的面内取向 ,自组装的各种影响条件和聚合物结构等 (pH值、侧链柔性间隔基团长度、以及偶氮生色团官能度等 )与自组装膜中偶氮生色团的面内取向程度存在一定的相关性 .通过研究偶氮生色团的取向和影响因素 ,可以深入认识侧链偶氮聚电解质的自组装行为  相似文献   

5.
侧链型偶氮聚电解质自组装和膜结构研究   总被引:5,自引:1,他引:4  
研究了4种侧链型偶氮聚电解质的自组装过程及其对自组装膜结构的影响.用聚电解质上的偶氮基团作为“探针”,研究了自组装过程中出现的生色团取向、解吸附和非线性增长等现象.这些侧链型偶氮聚电解质均具有较好的自组装性,但其自组装行为有很大差异.在不同的pH条件下,聚电解质的电离程度不同,导致吸附过程和自组装膜结构亦明显不同.自组装膜的增长和结构取决于体系中吸附和解吸的平衡.偶氮生色团端基的亲水或疏水性对自组装膜的增长有明显的影响.偶氮聚电解质自组装过程不同阶段出现的非线性增长现象,分别反映了基底、溶液性质和聚电解质结构等因素的影响.  相似文献   

6.
利用偶氮聚电解质上的羧基和偶氮生色基团的特性,研究了侧链偶氮聚电解质的pH值敏感性和热光性能.采用重氮-偶合反应方法合成了偶氮苯生色分子4-(4′-硝基苯基偶氮)苯酚,将生色分子、环氧氯丙烷和α-甲基丙烯酸通过自由基聚合法,合成了侧链偶氮聚电解质.利用傅里叶红外光谱(FTIR)、紫外-可见光谱(UV-V is)和核磁共振(1H-NMR)等分析手段对所合成的侧链偶氮聚电解质进行了结构表征.采用差示扫描量热分析仪(DSC)对偶氮聚电解质进行了热稳定性表征,其玻璃化转变温度(Tg)为189.8℃,表明具有较高的热稳定性.研究了不同pH值的偶氮聚电解质溶液的紫外-可见光谱,结果表明,偶氮聚电解质对pH值具有高度敏感性.采用衰减全反射(ATR)原理测量聚合物波导薄膜在650 nm和TM偏振下的折射率和热光系数dn/dT,其值为-1.92479×10-4℃-1,是无机材料如硅酸锌玻璃(5.5×10-6℃-1)和硼硅酸盐玻璃(4.1×10-6℃-1)的10倍以上,较有机材料聚苯乙烯(-1.23×10-4℃-1)和PMMA(-1.20×10-4℃-1)大.  相似文献   

7.
聚-4-重氮基苯乙烯(PDS)在碱性水溶液下通过与Na2SO3反应,制备了聚-4-偶氮磺酸基苯乙烯(PDSS).作为负离子聚电解质PDSS能与四-(三甲氨基苯基)-卟啉(TTMAP)通过离子相互作用进行层-层自组装.光照下该组装膜中的离子键转变为共价键,结果是组装膜对极性溶剂和盐水溶液变为非常稳定,从而能直接在KCl水溶液中测定其光电流.结果表明,该组装膜具有良好的光电转换性质.  相似文献   

8.
用偏振紫外光谱研究了 4种带有不同端基的侧链型偶氮聚电解质静电逐层自组装膜中偶氮生色团的初始取向 .讨论了不同的端基对偶氮生色团在自组装膜中初始取向的影响 .进一步探讨了偶氮聚电解质自组装膜的结构特点 .研究表明 ,侧链型偶氮聚电解质自组装膜中偶氮生色团普遍存在一定程度的沿面取向 .偶氮生色团所带端基的类型对其在自组装膜中的取向程度有较大的影响 ,这主要取决于偶氮生色团与聚阳离子基底的电荷相互作用和极性相互作用等 .对偶氮生色团在水溶液中能形成H 聚集体的自组装膜来说 ,H 聚集体对生色团取向也有一定的影响 .结果表明 ,在制备需控制生色团取向性的自组装膜时 ,要考虑生色团上的不同端基对取向的影响  相似文献   

9.
通过后重氮偶合的方法合成了一种含支化侧链偶氮苯生色团的聚电解质 (PBANT AC) .用IR、NMR、DSC、UV和元素分析等手段对聚合物的结构和性能进行了表征 .研究发现 ,在不同比例的水和四氢呋喃混合溶剂中PBANT AC的紫外 可见光光谱有很大的差别 .这种差别反映了PBANT AC分子中的偶氮苯生色团的不同聚集状态 .通过静电吸附逐层自组装的方法将PBANT AC分子组装成多层膜 .在 488nm的偏振Ar+ 激光的照射下 ,聚合物薄膜中的偶氮苯生色团可发生光致取向 ,取向有序度约 0 0 5 .偶氮苯生色团的顺反异构化反应使H 聚集体在光照后发生解聚集  相似文献   

10.
将侧链偶氮聚电解质应用于聚苯乙烯胶体微球表面的静电层层自组装,得到了偶氮聚电解质和聚二烯丙基二甲基氯化铵多层膜覆盖的核壳微球.实验表明,组装后偶氮苯基团发生了一定程度的解聚集,得到的胶体微球可表现出明显的光色效应.研究进一步采用含肉桂酸酯的光敏聚电解质作为交联的保护壳层,并通过光交联反应使表面层发生交联固化反应.将上述具有核壳结构的胶体球溶解去除聚苯乙烯内核后,得到了含光响应聚电解质的空心微胶囊.  相似文献   

11.
利用聚电解质逐层浸渍 ( layer- by- layer dipping)法制备自组装膜是最近发展起来的进行表面改性的新方法[1~ 3] .一方面 ,从理论上来说 ,只要是带电荷的聚合物都可以利用该技术制备具有优异性能的自组装膜 ;另一方面 ,还可以通过调节溶液的 p H值和离子强度等控制阴阳离子的组装过程 ,从而控制自组装膜的内部结构和表面形态 ,为在纳米级范围内设计和控制聚合物聚集态内部结构提供了可能性 .近年来 ,具有高度支化结构的超支化分子由于具有独特的物理和化学性能而受到了广泛的关注 [4 ,5] ,但以聚电解质逐层浸渍法制备超支化分子自组装膜…  相似文献   

12.
An alignment film derived from a photopolymerized self‐assembled film may be used to orient nematic liquid crystals after irradiating the film with linearly polarized UV (LPUV). A photosensitive cationic amphiphile was first synthesized containing two double bonds and which could be polymerized by UV. A layer‐by‐layer self‐assembled multilayer film was next prepared in an aqueous solution of the cationic amphiphile and poly(sodium 4‐styrenesulphonate); the UV‐Vis spectra showed that each layer of the LBL multilayer film was uniform. When the film was irradiated by LPUV, the photosensitive double bonds underwent [2+2] cycloaddition along the vector direction of LPUV. The polarized UV‐Vis absorption spectra also provided evidence that the film was anisotropic, i.e. the photopolymerization was along a certain direction. The anisotropic film was used as an alignment layer for nematic liquid crystals, and observations under a polarizing microscope indicated that the alignment of the liquid crystals was good, as expected, and that the orientation direction of the liquid crystals was always perpendicular to the electric vector of the irradiating LPUV.  相似文献   

13.
近年来 ,自组装及其形成的多层复合膜已经在导电、生物传感器及非线性光学等领域得到深入研究 ,特别是以聚阴离子与聚阳离子相互作用的静电自组装研究更为深入 .这一技术制备方法简单 ,无需特别的设备 ,对膜层厚度能随意调控 ,并以水作为介质 ,对环境无害 [1~ 3] .共轭高分子 (如聚苯胺、聚吡咯及聚苯亚乙烯等 )通过自组装形成共轭高分子膜 ,对制备具有导电、光电和传输等功能的薄膜半导体器件具有重要意义 .聚乙炔类是最早被发现且理论与应用研究最多的一类共轭高分子材料[4 ,5] .本文以聚 ( 4 -羧酸苯基 )乙炔 ( PCPA)为聚阴离子 ,以重…  相似文献   

14.
偶氮聚电解质在水性介质中的聚集行为和光响应性研究   总被引:1,自引:0,他引:1  
研究了一种侧链型偶氮聚电解质(PPAPE)在水溶液和水/四氢呋喃混合溶液中的缔合及聚集行为.利用紫外光谱检测了缔合体的形成过程.通过测定不同浓度下溶液的表面张力确定PPAPE在水溶液中的临界聚集浓度,并利用透射电镜对PPAPE聚集体直接进行观察.研究表明,PPAPE的疏水性偶氮生色团在适当的条件下会发生缔合,并进一步聚集成具有纳米尺寸的微球.伴随缔合体的形成,PPAPE的紫外最大吸收峰位置明显蓝移,而且这种缔合行为使PPAPE的光色效应明显减弱.尽管溶液pH值对PPAPE的光色效应也有明显的影响,但作用机理有本质的区别.  相似文献   

15.
一种光响应性热敏聚合物的合成及性能表征   总被引:5,自引:0,他引:5  
合成了偶氮单体 2 [4 (4′ 乙氧基苯基偶氮 )苯氧基 ]乙基丙烯酸酯 (EAPEA) ,利用核磁共振、傅立叶红外和元素分析法对其分子结构进行了表征 .利用该单体与异丙基丙烯酰胺共聚得到一种对温度和光敏感的共聚物 .共聚物中少量的EAPEA单元能够显著降低聚异丙基丙烯酰胺 (PNIPA)的相转变温度 .当EAPEA的摩尔含量为 2 94%时 ,相转变温度从PNIPA均聚物的 31 8℃下降为 2 2 0℃ .在波长为 36 5nm的紫外光照射下 ,共聚物中的偶氮基团能够从反式构型转变为顺式构型 .在紫外光下照 30s后 ,EAPEA摩尔含量为 0 98%的聚 {异丙基丙烯酰胺 共 2 [4 (4′ 乙氧基苯基偶氮 )苯氧基 ]乙基丙烯酸酯 }的相转变温度从 2 7 2℃上升到2 9 3℃  相似文献   

16.
以阳离子化的辣根过氧化物酶 (HRP)和阴离子聚苯乙烯磺酸钠 (PSS)的预混合溶液 ,与阳离子聚电解质聚二甲基二烯丙基氯化铵 (PDDA)通过逐层组装 ,在阴离子化聚对苯二酸乙二酯 (PET)表面构建了多层生物活性膜 .用紫外 可见光谱仪 (UV Vis)和原子力显微镜 (AFM)研究了交替自组装膜的结构和表面形膜 ,并测定了自组装膜的生物催化活性 .结果表明 ,预混合溶液中的PSS与HRP一起沉积在PDDA膜层上组装成 (PSS+HRP)膜层 ,且每层中PSS和HRP的比例一致 ;(PSS +HRP)膜层呈条状分布 ,膜表面较为平整 ;多层膜中的HRP催化H2 O2 与 4 氨基安替比林的显色反应的表观米氏常数为 9 7× 10 - 5mol·L- 1 (相对于H2 O2 底物 ) ,较溶液中 (1 5 2× 10 - 4mol·L- 1 )的小 .  相似文献   

17.
在低温碱性甲醇溶液中一氯化四苯基卟啉铁催化萘酚H2O2氧化高选择性地制取2-羟基-1,4-萘醌(HNQ),以2-萘酚和1-萘酚为底物时HNQ的最高产率分别为57%和40%(纯度>95%).根据金属卟啉催化氧化反应的特性,采用UV-Vis和EPR现场光谱监测催化剂和反应物的光谱变化,提出了羟基游离基加成反应机理.  相似文献   

18.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
探讨血清对细胞剥离的影响.将温度应答性高分子聚( N 异丙基丙烯酰胺/ 丙烯酸)的叠氮苯胺的衍生物(AzPhPIA) 条纹状地光固定在组织培养聚苯乙烯(PSt) 基板上,并对鼠成纤维细胞(STO) 血清培养2h .温度低于最低临界温度(LCST) ,粘附在AzPhPIA PSt 上的细胞不能很好地剥离.选用血清中两种典型蛋白质 白蛋白和纤维粘连蛋白,模拟血清进行细胞粘附和剥离实验.结果表明,纤维粘连蛋白在基板上全面而均匀地附着,从而加强了细胞与基板表面的粘附性,使细胞在低温时不易剥离;白蛋白在基板上的附着是条纹状的,AzPhPIA PSt 表面附着白蛋白少,这说明是由于温度应答性高分子表面亲水性提高,高分子链伸展而不是白蛋白的阻害作用引起细胞的脱落.另外,表面分析结果表明,蛋白质的吸收并不影响AzPhPIA PSt 材料表面的可湿性.  相似文献   

20.
IntroductionThe preparationofmicro particlelatticewithstrictsizesandspacecontrolisanimportantproblemtobesolvedurgentlyinmanyhigh techfields .Tradi tionalmicro fabricationmethodisphotolithography ,butitisunabletoproduceanypatternsonacurvedsurfaceanddiffic…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号