首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用所研制的24位全自动加压溶剂萃取仪(APLE),以丙酮-正己烷(体积比为1:1)为溶剂,在100℃和10MPa条件下,对荞麦样品中残留的7种有机氯农药进行了萃取,并通过气相色谱对萃取液进行定量分析。萃取的绝对回收率为68%~126%.相对标准偏差为1.2%~14.7%,检测下限为0.051~0.18ng/g。与索氏提取法对比,相对提取回收率为116%~148%,表明萃取收率高于索氏提取法。  相似文献   

2.
研究了加速溶剂萃取(ASE)对沉积物中邻苯二甲酸酯类(PAEs)物质的提取效果,建立了快速溶剂萃取/气相色谱-质谱联用(GC/MS)检测沉积物中16种邻苯二甲酸酯类物质的方法。用正己烷和二氯甲烷混合溶剂作为提取溶剂,加速溶剂萃取法萃取沉积物中16种PAEs,再用Florisil层析柱净化,最后用GC/MS对净化后提取液中的PAEs进行定量分析。结果表明:当萃取剂为二氯甲烷-正己烷(1∶1,V/V),萃取温度为80℃时,萃取效率最高,16种PAEs的回收率稳定在81.2%~128.5%之间,相关系数≥0.99,检出限为0.12~0.98 ng/g,相对标准偏差为1.1%~10.8%。加速溶剂萃取法与传统索氏提取法相比,既提高了萃取效率同时又减少了有机萃取溶剂的用量。在检测实际样品时,同时加入3种内标指示剂对方法的性能进行了验证,3种内标的回收率分别为106.0%±18.8%,87.4%±10.8%和81.4%±14.5%,样品中16种PAEs的检出率为100%。前处理方法处理简单,定性与定量分析准确可靠。  相似文献   

3.
采用气相色谱-质谱法对超声波萃取与索氏萃取丙烯腈-丁二烯-苯乙烯(ABS)中四溴双酚A进行了比较研究。超声波萃取的最优试验条件:溶剂为二氯甲烷,温度为30℃,时间为60min;索氏萃取的最优试验条件:溶剂为甲苯,回流次数为每小时4次,时间为12h。四溴双酚A的质量浓度在1.00~100mg·L-1范围内与其峰面积呈线性关系。索氏萃取的萃取率高于超声波萃取的萃取率,索氏萃取的相对标准偏差(n=6)为2.1%,加标回收率在80.4%~85.7%之间。  相似文献   

4.
超声萃取沉积物中六氯苯的研究   总被引:1,自引:0,他引:1  
研究了沉积物中六氯苯的超声萃取条件,并采用气相色谱进行定量分析。研究结果表明,在以10 mL可密闭耐压试管为萃取容器,6 mL丙酮∶正己烷(体积比1∶1)为萃取溶剂,超声功率90 W,萃取时间40 min,温度35~40℃,2次萃取的优化条件下,六氯苯稳定性较好。该方法的平均回收率为84.8%,相对标准偏差为1.92%(n=10),检出限为0.071μg/kg。本法与传统的索氏提取法和浸泡振荡法相比,具有萃取效率高、萃取时间短、溶剂用量小、操作简单等优点,并成功用于实际样品的测定。  相似文献   

5.
土壤中吡虫啉加速溶剂萃取和传统提取方法对比研究   总被引:2,自引:0,他引:2  
平立凤  朱亚红  赵华  胡秀卿  吴珉  李振 《分析化学》2006,34(10):1437-1440
对土壤样品中吡虫啉快速压力溶剂萃取技术(PSE)与传统提取方法(超声波萃取、振荡提取和索氏萃取)进行了对比研究。结合固相萃取柱(SPE)净化-HPLC测定技术比较了4种提取方法对土壤样品中吡虫啉的提取效果。探讨了温度对PSE的影响,确定在萃取压力100bar、温度80℃条件下,PSE效果最好,3个土壤样品不同添加浓度下,吡虫啉平均回收率均大于85%,标准偏差小于2.5%。与从土壤中提取吡虫啉的传统方法相比,PSE回收率高于超声波萃取和振荡提取,其重现性和回收率与索氏萃取相当甚至更好,而且PSE避免了使用超声波萃取和振荡提取所带来的多次清洗的问题,节省溶剂;比索氏萃取节省时间。  相似文献   

6.
建立了气相色谱–质谱法检测食品塑料包装材料中邻苯二甲酸二(2-乙基己)酯含量的分析方法。比较了水浴振荡提取法、超声提取法、索氏提取法和微波辅助萃取法对测定结果的影响。实验结果表明,在微波辅助萃取条件下,样品中邻苯二甲酸二(2-乙基己)酯的检出限为0.02 mg/kg,测定结果的相对标准偏差为1.58%~1.74%(n=5),加标回收率为89.0%~98.4%。该方法具有操作快速简便、精密度好、检出限低和准确度高等优点,适用于食品塑料包装材料中邻苯二甲酸二(2-乙基己)酯含量的测定。  相似文献   

7.
超声-索氏萃取-重量法测定土壤中总石油烃含量   总被引:10,自引:0,他引:10  
采用正交实验设计,分别对超声萃取法(UE)和超声-索氏萃取法(USE)测定土壤中总石油烃(TPH)的影响因素进行分析,获得优化条件。采用以上两种方法及传统的索氏萃取法(SE)对新鲜石油污染土、微生物修复土和老化植物修复土进行提取。结果表明:超声萃取法的优化条件为选用15mL三氯甲烷,萃取4次;超声-索氏萃取法的优化条件为60W超声萃取10min,萃取剂用量125mL,萃取6h;超声-索氏萃取法平均回收率最高,为102.98%,且数据稳定可靠;其次是超声萃取法,为99.69%;而传统的索氏萃取法最低,为97.31%。研究证明超声-索氏分析法在缩短测定时间的同时提高了回收率,可作为不同土壤中总石油烃(TPH)含量测定的新方法。  相似文献   

8.
烟草样品或从卷烟烟气中收集到的固态悬浮颗粒样品以正己烷在索氏提取器中提取,提取液用弗罗里硅土固相萃取净化,所得溶液经蒸缩至5mL后,供气相色谱法测定。采用DB-5弹性石英毛细管柱分离样品,电子捕获检测器检测,共测定了17种有机氯农药(OCP′s),其检出限(3S/N)在0.02~0.10μg.g-1范围内。平均加标回收率为86%~92%,相对标准偏差(n=7)为3.0%~4.1%。  相似文献   

9.
环境中除草剂扑草净残留分析方法的研究   总被引:4,自引:0,他引:4  
建立了高效液相色谱(HPLC)法测定环境中土壤、水和小麦中除草剂扑草净残留量的分析方法。采用丙酮超声提取,硅胶柱层析净化,测定土壤中扑草净残留量;水样直接用LC-18固相萃取小柱分离、净化和富集;采用超声提取,甲醇∶水=1∶1(V/V)为提取剂,LC-18固相萃取小柱分离、净化,测定小麦样品中扑草净的残留。结果表明:HPLC法检测扑草净的线性范围为0.5~16 mg.L-1,相关系数R2=0.9999,方法的检出限为0.0125 mg.L-1。土壤的加标回收率为88.2%~102.4%,相对标准偏差为6.3%~6.4%;水样的加标回收率为81.7%~102.5%,相对标准偏差为4.5%~4.6%;小麦的加标回收率为88.4%~101.7%,相对标准偏差为3.6%~5.5%。  相似文献   

10.
土壤中17种有机氯农药残留量的毛细管气相色谱测定法   总被引:1,自引:0,他引:1  
采用专用索氏提取器、正己烷萃取、Elite-5MS弹性石英毛细柱分离、GC-ECD测定了土壤中17种有机氯农药残留量.方法的检出限为0.4×10-10~2.0×10-10 g,回收率范围在76.0%~108.9%之间,相对标准偏差为0.66%~9.10%.该方法适用于土壤有机氯农药残留量的分析.  相似文献   

11.
建立了枇杷花中有机氯类农药残留量的固相萃取-毛细管气相色谱(SPE-CGC)分析方法。对采自福建蒲田等12地的枇杷花中六六六(4种异构体)、滴滴涕(4种异构体)、五氯硝基苯共9种有机氯农药的残留量进行了测定。样品采用丙酮超声波提取,浓缩后过Florisil固相萃取小柱净化,洗脱剂为V(正己烷)∶V(丙酮)100∶1。用DB-1701弹性石英毛细管气相色谱柱分离样品,微电子捕获检测器进行检测。9种有机氯农药的峰面积与其质量浓度均有良好的线性关系,相关系数均大于0.999,最低检测限为0.016~0.125μg/L,样品的加标回收率为85.4%~106.9%,相对标准偏差为1.8%~9.8%。该方法能够满足农药残留检测的要求。  相似文献   

12.
Pressurized liquid extraction (PLE) is a relatively new technique applicable for the extraction of persistent organic pollutants from various matrices. The main advantages of this method are short time and low consumption of extraction solvent. The effects of various operational parameters (i.e. temperature of extraction, number of static cycles and extraction solvent mixtures) on the PLE efficiency were investigated in this study. Fish muscle tissue containing 3.2% (w/w) lipids and native polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and other related compounds was used for testing. Purification of crude extracts was carried out by gel permeation chromatography employing Bio-Beads S-X3. Identification and quantitation of target indicator PCBs and OCPs was performed by high-resolution gas chromatography (HRGC) with two parallel electron-capture detectors (ECDs). Results obtained by the optimized PLE procedure were compared with conventional Soxhlet extraction (the same extraction solvent mixtures hexane–dichloromethane (1:1 v/v) and hexane–acetone (4:1 v/v) were used). The recoveries obtained by PLE operated at 90–120 °C were either comparable to “classic” Soxhlet extraction (for higher-chlorinated PCB congeners and DDT group) or even better (for lower chlorinated analytes). The highest recoveries were obtained for three static 5 min extraction cycles.  相似文献   

13.
An analytical procedure was developed using headspace solid-phase microextraction (HS-SPME) for the determination of organochlorine pesticides (OCPs) and their metabolites in sandy soil samples. The developed procedures involving fiber selection, temperature effect, absorption time, soil matrix and the addition of solvents of different polarity were optimized. Also, the results were compared to those achieved using Soxhlet extraction standard method. The 100-microm polydimethylsiloxane (PDMS) and 65-microm PDMS-divinylbenzene showed good extraction efficiency for 18 organochlorine pesticides. An increase in the extraction efficiency of organochlorine pesticides and the metabolites was observed when the temperature increased, and an optimum temperature of 70 degrees C for extracting OCPs was obtained. The application of other hydrophilic solvents had different effects on the extraction of organochlorine pesticides and the metabolites. Higher responses of OCPs were obtained when 5 ml of water was added to the soil. Good linearity of OCPs between 0.2 and 4 ng/g soil was observed. The relative standard deviation was found to be lower than 25%. Also the limits of detection were between 0.06 and 0.65 ng/g, which were lower than those obtained using Soxhlet extraction. Moreover, the optimized HS-SPME procedure was applied to the analysis of OCPs in certified reference material (CRM) 804-050 soil and compared with Soxhlet extraction procedure. Results obtained in this study were in good agreement with those obtained using Soxhlet extraction. The mean values obtained using HS-SPME technique were in the range of 16.5 to 1459.6 mg/kg, which corresponds to the recoveries of 68% to 127% of the certified values of CRM soil.  相似文献   

14.
阎正  封棣  李申杰  赵亚奎  杨慧 《色谱》2005,23(3):308-311
建立了中草药中有机氯类农药残留量的固相萃取-毛细管气相色谱(SPE-CGC)分析方法。对丹参、黄芩、射干、白芍、白芷、天南星、牛蒡子、知母、桔梗共9种中草药中六六六的4种异构体、滴滴涕的4种异构体、七氯、艾氏剂、环氧七氯、狄氏剂、异狄氏剂共13种有机氯农药的残留量进行了测定。以丙酮-正己烷混合物作提取剂,采用超声波提取样品,然后用Florisil固相萃取小柱快速净化提取物。采用SPB-5弹性石英毛细管气相色谱柱分离样品,电化学检测器进行检测。13种农药的峰面积与其质量浓度均有良好的线性关系,相关系数均大于0.998。最小检测量为0.064~0.61 μg/L;样品的加标回收率为87.3%~102.3%(相对标准偏差为1.3%~6.8%)。该法简便快速、灵敏准确,具有广泛的应用前景。  相似文献   

15.
搅拌棒吸附子萃取与GC-MS法测定水中20种有机氯农药   总被引:2,自引:0,他引:2  
建立了搅拌棒吸附子萃取/气相色谱-质谱法(SBSE/GC-MS)同时检测水中α-六六六、γ-六六六、β-六六六、七氯、δ-六六六、艾氏剂、环氧七氯、γ-氯丹、顺-氯丹、硫丹Ⅰ、p,p-滴滴伊、狄氏剂、异狄氏剂、p,p-滴滴滴、硫丹Ⅱ、p,p-滴滴涕、异狄氏剂醛、硫丹硫酸盐、甲氧滴滴涕、异狄氏剂酮20种有机氯农药含量的方法.样品在室温下经拌棒吸附子搅拌吸附,甲醇解吸附后,以J&W DB-35 MS(30 m×0.25 mm×0.25 μm)石英毛细管色谱柱为分析柱,气相色谱-质谱选择离子流模式检测.考察了萃取时间、氯化钠及甲醇加入量等对萃取的影响.实验结果表明:在2.5 ~20.0 μg/L 范围内,20种有机氯农药呈良好的线性关系,检出限(S/N=3)为0.008 ~0.118 μg/L,水样中分别添加2.5、20 μg/L的20种有机氯农药,回收率为 52% ~117%,相对标准偏差小于13%(n= 6).该方法操作简便、快速、灵敏度高,应用于实际样品检测,结果满意.  相似文献   

16.
An efficient and fast microwave-assisted extraction (MAE) method followed by gas chromatographic separation with mass spectrometric detection (GC–MS) was developed for the extraction of 18 organochlorine pesticides (OCPs) from sediment. Parameters affecting the MAE procedure such as the type and volume of the extraction solvent, irradiation power, temperature and irradiation time were successfully optimised. Under the optimal conditions, extraction efficiencies in the range of 73.4–119% were obtained with THF–HEX (9:1, v/v) for all OCPs studied. The method was linear over the range of 2.9–5000 ng g?1 with determination coefficients (r2) higher than 0.992 for all analytes. The limits of detection, LODs (S/N = 3), obtained varied from 1.0 to 2.2 ng g?1 and limits of quantification, LOQs (S/N = 10) were between 2.9 and 6.8 ng g?1. The proposed method was successfully applied to the analysis of real sediment samples and acceptable recoveries from 70.1 to 124% with RSDs ≤14.8% were obtained. 10 OCPs were determined below their LOQ and 8 OCPs in the range of 124–2830 ng g?1. The MAE method was compared with Soxhlet, shake flask and ultrasonic solvent extraction techniques. Thus, the MAE–GC–MS method could efficiently be used for selective extraction and quantification of the target analytes from the complex sediment matrices.  相似文献   

17.
The aim of this study was to investigate the level of organochlorine pesticides use for treatment of tomatoes, eggplants and cucumbers in Kirklareli, Turkey. Eighteen organochlorine pesticides were identified in vegetable samples using microwave or Soxhlet extraction, and results were obtained by gas chromatography–mass spectrometry. The optimized conditions were 1 mL/min for flow rate in the mobile phase, 1 μL for injection volume and 70 V for fragmentation potential. The analytical parameters show that the microwave oven extraction procedure provided the best results when compared to the Soxhlet extraction procedure. Samples were prepared for analysis with hexane?dichlormethane (1: 1, v/v, 40 mL) using a solid-phase extraction method. The limits of detection and quantitation for the eighteen analytes were between 0.02–0.26 and 0.06–0.87 μg/L, respectively, and the relative standard deviations of the migration time ranged from 2.4 to 8.9%. The recoveries of surrogate spiked in vegetable samples ranged from 70 to 116%, respectively. The obtained concentrations of pesticides in all vegetables studied were proved in the range of ND–123 μg/kg. The organochlorine pesticide sum was below the legal limit, except for Endrin and Methoxychlor, which requires a further elucidation of the organochlorine pesticides pollution sources in the region. These studies on accumulation of organochlorine pesticides were necessary for accomplishing a comprehensive ecological risk assessment.  相似文献   

18.
The efficiency of microwave-assisted extraction (MAE) was evaluated for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in fish. An isotope dilution method was used for quantification via analysis of the samples by gas chromatography and mass spectrometry. MAE solvent, temperature, and time were optimized, and observed concentrations were compared. The MAE results were also compared to those of other extraction techniques (Soxhlet extraction, pressurized liquid extraction, saponification, and homogenization). Concentrations of PCBs and OCPs obtained by MAE at 120 degrees C for 10 min were comparable to those by the other techniques. The results suggest that MAE can be used for the analysis of PCBs and OCPs in fish.  相似文献   

19.
The performances of Soxhlet extraction, dive-in Soxhlet extraction, microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), fluidized-bed extraction (FBE), and ultrasonic extraction (UE) for the analysis of organochlorine pesticides in animal feed have been investigated. ASE and MAE provided significantly better extraction efficiency than Soxhlet extraction. The concentrations were 126.7 and 114.8%, respectively, of the values obtained by classical Soxhlet extraction, whereas the results from FBE and dive-in Soxhlet were comparable with those from the standard Soxhlet procedure. The reproducibility of FBE was the best, with RSDs ranging from 0.3 to 3.9%. Under the investigated operation conditions UE was not efficient, with the recoveries of target compounds being about 50% less than Soxhlet. Additionally, the performances of Soxhlet, dive-in Soxhlet, MAE, ASE and FBE were validated by determination of the certified reference material BCR-115. The results from the extraction techniques were in good agreement with the certified values.  相似文献   

20.
宋晓娟  贺心然  尹明明  万延延 《色谱》2018,36(10):1038-1044
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)同时分析土壤中8种有机氯农药(OCPs)和5种有机磷农药(OPPs)的方法。样品由正己烷-丙酮(1:1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹仪浓缩后,采用硅胶(Si)固相萃取小柱进行净化,正己烷-丙酮(1:1,v/v)溶液进行洗脱,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,13种目标物在1.00~100 μg/L范围内线性关系良好,相关系数(R)大于0.995;加标回收率为66.8%~88.4%,能够实现准确定量;日内精密度与日间精密度均小于10%。当取样量为10.0 g时,8种OCPs的方法检出限为0.02~0.04 μg/kg,5种OPPs的方法检出限为0.06~0.12 μg/kg,能够满足土壤农药残留的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号