首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
担载金属簇催化剂的研究   总被引:2,自引:0,他引:2  
合成了以硅胶、聚苯乙烯和NaY分子筛为载体的YCCo_3(CO)_9担载簇和以聚苯乙烯和聚冠醚为载体的Co_4(CO)_(10)(pph)_2担载金属簇催化剂。测试了这些担载催化剂的红外光谱,并对四核钴簇进行了电子能谱的研究。考察了这些催化剂对烯烃醛化反应的催化性能。四核钴簇高分子催化剂的催化活性高于均相,选择性也有提高。分子筛锁笼催化剂提高了产物的正异构比。  相似文献   

2.
许多金属铑的络合物,如Wilkinson催化剂——RhCl(PPh_2)_3、Rh_2Cl_2(CO)_4、RhH(CO)(PPh_3)_3,等都是重要的有机反应(醛化反应、羰基化反应和加氢反应等)的有效催化剂,而水合氯化铑则是制备各种铑络合物的理想起始物质。因为金属铑不溶于沸腾的王水,而由氯气直接与金属铑在高温下反应得到的无水氯化铑不溶于水及无机酸从而无法利用,所以水合氯化铑  相似文献   

3.
采用高压原位FT -IR技术 ,对比研究了CO加H2 反应条件下Rh/SiO2 和Rh/NaY催化剂表面反应中间物种 .在Rh/SiO2 表面上 ,无论在常压还是在 1.0MPa合成气中 ,只观察到线式和桥式吸附CO .而在常压合成气中 ,Rh/NaY上不仅存在上述CO吸附物种 ,而且还有孪生型的Rh(I) (CO) 2 和少量Rh6 (CO) 16 ;当合成气压力升至 1.0MPa后 ,Rh(I) (CO) 2 迅速转化成Rh6 (CO) 16 和在 2 0 42cm-1产生吸收的单核羰基Rh物种 ,与此同时催化剂表面还生成了单齿和双齿乙酸根物种 ;这些在高压下生成的物种在合成气压力重新降回到常压时依然稳定存在 .研究Rh/NaY上合成气反应表面物种与H2 的反应行为表明单齿乙酸根很可能是反应的活性中间物 .这些结果说明Rh/NaY催化剂在高压合成气中的重构是诱发选择生成乙酸反应的基础  相似文献   

4.
采用高压原位FT-IR技术,对比研究了CO加H~2反应条件下Rh/SiO~2和Rh/NaY催化剂表面反应中间物种。在Rh/SiO~2表面上,无论在常压还是在1.0MPa合成气中,只观察到线式和桥式吸附CO。而在常压合成气中,Rh/NaY上不仅存在上述CO吸附物种,而且还有孪生型的Rh(Ⅰ)(CO)~2和少量Rh~6(CO)~1~6;当合成气压力升至1.0MPa后,Rh(Ⅰ)(CO)~2迅速转化成Rh~6(CO)~1~6和在2042cm^-^1产生吸收的单核羰基Rh物种,与此同时催化剂表面还生成了单齿和双齿乙酸根物种;这些在高压下生成的物种在合成气压力重新降回到常压时依然稳定存在。研究Rh/NaY上合成气反应表面物种与H~2的反应行为表明单齿乙酸根很可能是反应的活性中间物。这些结果说明Rh/NaY催化剂在高压合成气中的重构是诱发选择生成乙酸反应的基础。  相似文献   

5.
以硅胶为载体, 采用键合接枝法将2-(二苯膦基)乙基三乙氧基硅烷(DPPES)共价键合于硅胶表面, 制备了性能优良的硅胶键合型膦配体(以SiO2(PPh2)表示). 以SiO2(PPh2)为配体, Rh(acac)(CO)2 (acac:乙酰丙酮)为催化前体, 负载铑膦络合物催化剂(SiO2(PPh2)/Rh)在1-辛烯氢甲酰化反应中原位生成. 对生成的负载型催化剂和硅胶键合型膦配体进行了傅里叶变换红外(FTIR)光谱表征, 考察了膦/铑摩尔浓度比([P]/[Rh])、温度等因素对铑催化的长链1-辛烯氢甲酰化反应的影响. 结果表明, 膦/铑摩尔浓度比的增加能显著提高反应的成醛选择性, 降低铑的流失. 在[P]/[Rh]=12、363 K、2.0 MPa、1.5 h 的温和反应条件下, 1-辛烯转化率和成醛选择性分别可达98.4%和95.3%, 其催化活性与DPPES或三苯基膦(TPP)作配体时的均相铑催化相近. 催化剂循环4 次后, 反应活性无明显下降, 1-辛烯转化率均在97.0%左右, 经电感耦合等离子体原子发射光谱(ICP-AES)检测,有机相中铑流失低于0.1%.  相似文献   

6.
研究了Rh_4(CO)_(12)和[Rh(CO)_2Cl]_2两种铑原子簇合物在1—已烯氢甲酰化反应中的催化性能和反应前后催化剂溶液的红外光谱变化。结果表明,按加入的Rh_4(CO)_(12)和[Rh(CO)_2Cl]_2的分子数计算,前者的催化活性比后者高出一倍多;若按铑原子数计算,则二者活性较接近。红外光谱测定说明,Rh_4(CO)_(12)的簇结构反应前后无显著变化。然而,[Rh(CO)_2Cl]_2参与反应后却变成了以Rh_4(CO)_(12)为主的簇合物。反应过程中两种催化剂母体可能解离成类似的单核铑催化活性物种,反应之后,在常温常压下又聚合为簇合物。  相似文献   

7.
新型双膦配体的合成及其在2-丁烯氢甲酰化反应中的应用   总被引:1,自引:0,他引:1  
合成了以联苯为骨架,以吲哚为取代基的双膦配体,并研究了该配体与Rh(acac)(CO)2原位生成的催化剂在2-丁烯氧甲酰化反应中的催化性能.考察了膦/铑比、反应温度、反应压力以及2-丁烯与Rh(acae)(CO)2摩尔比等因素对反应活性及区域选择性的影响.结果表明,在60℃反应时,醛的正异比高达28.5;当压力为2.0...  相似文献   

8.
铑膦络合物是最常用的烯烃氢甲酰化反应的催化剂,目前改进这类催化剂的活性和选择性大多从选用新型膦配体着手,而很少研究改变铑络合物本身的配位环境.Rh(acac)(CO)_2等一价铑络合物是人们熟知的氢甲酰化催化剂,而类似结构的Rh(ON)(CO)_2型络合物(ON为氮氧阴离子配体)催化剂则尚未见报道.本文研究了Rh(ON)(CO)_2与膦配体组成的体系在常压下对烯烃氢甲酰化反应的催化作用.所用三种Rh(ON)(CO)_2型络合物的结构如下:  相似文献   

9.
田密  李海峰  王来来 《催化学报》2018,39(10):1646-1652
双环戊二烯(DCPD)是石脑油和燃料油裂解蒸汽的C5馏分中最重要的组分之一.DCPD经氢甲酰化反应可转化为具有广泛应用前景的三环癸烷不饱和单甲醛(TCDMA)和三环癸烷二甲醛(TCDDA),并可通过还原或胺化进一步转化为相应的醇和胺类化合物,用于农药、医药、润滑油和香料等的合成.但是,由于其分子结构中含有3,4-位和8,9-位两种不同活性的不饱和双键,因此DCPD氢甲酰化反应的产物通常非常复杂.过去数十年,研究者们为此相继开发了高转化率和高选择性的催化体系.但是反应条件相对都比较苛刻,尤其是对于双醛TCDDA的合成,通常需要较高的反应温度和反应压力以及大量的催化剂.本文以2'-联萘位置含有不同酯取代基(OCOMe,OCOPh,OCOAdamantyl和OCOPhCl)的三-H8-联萘单齿亚磷酸酯L1-L4为配体,以不同价态的金属铑前驱体为催化剂,开发了Rh催化DCPD氢甲酰化反应的新体系,并对亚磷酸酯配体、不同价态的金属铑催化剂前驱体、反应温度、反应时间、溶剂以及不同的底物和催化剂的S/C摩尔比对DCPD转化率和TCDDA选择性的影响进行了深入的研究.结果表明,当以金属铑前驱体Rh(acac)(CO)_2和配体L4-OCOPhCl为催化体系时,在DCPD氢甲酰化反应中表现出很高的活性,尤其是当S/C=4000时,TON值达到3286,并且该催化体系对于双醛TCDDA具有良好的选择性.值得注意的是,在相对温和的条件(6 MPa,120℃)下,Rh(Ⅰ)催化剂与氯苯酯基取代的三-H_8-联萘单齿亚磷酸酯所形成的配合物在催化DCPD的氢甲酰化反应中,DCPD的转化率达到99.9%,而双醛TCDDA的选择性达到98.7%.此外,我们采用L4-OCOPhCl作为模型单齿磷酸配体,在溶液中通过NMR对可能形成的Rh(Ⅰ)/亚磷酸酯催化物种进行了深入的考察.~(13)P NMR谱图表明,在DCPD的氢甲酰化反应中,催化物种[Rh(acac)(CO)(L4-OCOPhCl)]比[Rh(acac)(CO)(L2-OCOPh)]具有更好的稳定性,而且只有体积较大的配体L4-OCOPhCl才能与铑前驱体Rh(acac)(CO)_2进行很好的配位.  相似文献   

10.
SiO2负载的磺化三苯膦铑配合物催化高碳烯氢甲酰化   总被引:7,自引:0,他引:7  
本文将水溶性磺化三苯基膦铑配合物催化剂负载在SiO_2表面使其复相化,考察不同制备方法制得催化剂的性能及对反应活性和选择性的影响。这种负载化水溶性Wilkinson催化剂比表面积较大,可在适当过量配体存在下保持较高的催化活性;当液态高碳烯烃十一烯酸甲酯和1-己烯在固定床加压流动态反应器中连续进行氢甲酰化催化反应时,产物醛的选择性大于95%;正异醛比(n/i值)随P/Rh摩尔比的提高而提高P/Rh=15,产物中正构醛大于或接近80%(n/i为4)。P/Rh>15后,配体增多几乎不再提高产物n/i值,而影响反应速度。  相似文献   

11.
以4,4'-二羟基二苯丙烷和2,4-二叔丁基苯酚为原料合成了一种新型双膦亚磷酸酯配体,并用此配体和Rh(acac)(CO)2原位形成的催化体系催化1-己烯的氢甲酰化反应.系统考察了反应温度、压力、P/Rh和溶剂四种反应参数对催化体系的催化性能影响.选择了最佳的反应条件,在铑浓度为0.75×10-3mol/L、P/Rh比为10、温度100℃、压力(H2/CO=1)2.0MPa的条件下反应1.0h,在溶剂甲苯中1-己烯的转化率可达到100%,醛选择性为98.7%,TOF为3498.6h-1.在相同的条件下与以三苯基膦和单膦亚磷酸三(2,4-二叔丁基苯基)酯为配体的铑催化剂相比较,以新型双膦亚磷酸酯为配体的铑催化剂的催化活性是PPh3的1.6倍,而与亚磷酸三(2,4-二叔丁基苯基)酯的催化活性相当.  相似文献   

12.
多核铑原子簇络合物的结构稳定性和醛化活性   总被引:6,自引:0,他引:6  
合成了十二羰基四铑和十六羰基六铑,证明两者都是很活泼的烯烃醛化催化剂。用红外光谱测定了醛化反应前后的铑原子簇的稳定性,结果表明Rh_4(CO)_12在醛化条件下不稳定,转变成Rh_6(CO)。考察了强σ~-给电子配位体三苯基磷对簇分子骨架稳定性的影响,表明Rh_4(CO)_(13)原子簇骨架在醛化反应条件下已被打破,并转变成单核分子碎片,而Rh_6(CO)_16在此条件下是比较稳定的,上述两种铑簇化合物与单核络合物RhCl(CO)(PPh_3)_2对烯烃醛化具有相同的表观反应速度。  相似文献   

13.
将具有“高温混溶、室温分相”特征的温控PEG(聚乙二醇)两相催化体系用于三聚丙烯氢甲酰化反应.系统研究了以Rh(acac)(CO)2/TMPGP(TMPGP:P[O(CH2CH2O)nCH3]3,n=8)为催化剂时各种反应条件对三聚丙烯氢甲酰化反应的影响,并考察了催化剂的循环使用效果.在合成气压力6MPa(CO/H2体积比为1)及温度为130℃的反应条件下,三聚丙烯氢甲酰化反应的转化率和醛收率可分别达77%和75%.室温下分离得到的含催化剂的PEG相循环使用11次,催化剂活性基本保持不变,第一次循环的铑流失率为1.5%(质量分数),11次循环的平均铑流失率为0.69%.于-20℃下分相得到的催化剂相可循环使用15次,其催化活性保持不变,第一次循环的铑流失率可降至0.16%.  相似文献   

14.
本文应用原位红外光谱技术,在接近于工业反应条件下(H_2:CO=1:1.1.0MPa.80℃),在四种溶剂(异丁醛、2—乙基已醇、甲苯和环已烷)中考察了铑膦配合物催化剂Rh(acac)(CO)(PPh_3)的烯烃醛化反应.检测到在四种溶剂中的主要中间配合物均为HRh(CO)_2(PPh_3)_2,但在2—乙基己醇溶剂中的烯烃醛化反应速度高于异丁醛、甲苯和环已烷溶剂(约1.2~1.3倍).结果表明,采用2—乙基已醇溶剂替代醛类做反应溶剂,有可能提高工业反应装置的生产能力.  相似文献   

15.
以聚乙二醇(PEG)为反应介质,考察了水溶性铑膦络合物RhCl(CO)(TPPTS)2 (TPPTS为间-三苯基膦三磺酸钠)对长链烯烃氢甲酰化反应的催化性能. 结果表明,添加适量的水于PEG中对催化剂活性有重要影响. 以PEG-400-H2O为溶剂的催化体系对 1-十二烯氢甲酰化反应的催化活性较高,在100 ℃, 5 0 MPa的优化条件下, 1-十二烯的转化率可达到92 6%, 生成醛的选择性为95 8%. 反应完成后,含水溶性铑膦络合物的PEG-水溶液与含产物的有机相分离方便,易于实现催化剂的循环使用,催化剂重复使用8次,未观察到活性和选择性下降.  相似文献   

16.
 利用微乳法,通过调节W0值(水与表面活性剂的摩尔比), 实现了负载型Rh/SiO2催化剂中金属铑粒子大小的可控合成. 该催化剂具有核壳结构,其中铑为核, SiO2为壳. TEM表征及反应评价结果显示金属铑的粒子大小(1.8~5.0 nm)对CO加氢反应性能具有显著的影响. 当粒子大小为3 nm时, CO加氢反应活性存在最小值; 随着粒子的进一步增大, CO加氢反应活性上升. 与浸渍法制备的催化剂相比,微乳法制备的催化剂粒子大小均一; 对负载量相同、平均粒子大小相同的两种催化剂,微乳法合成的Rh/SiO2催化剂对CO加氢反应具有较高的催化活性.  相似文献   

17.
在近似工业反应条件下(H2/CO=1:1, 1.0MPa, 70℃), 应用加温加压原位核磁共振技术, 考察了铑膦配合物催化剂HRh(CO)(PPh3)3-PPh3体系的烯烃醛化反应。结果表明,在烯烃醛化反应条件下, 反应液中存在羰基氢化铑中间配合物, 并在^1H NMR获得了该配合物中Rh-H键的质子讯号。  相似文献   

18.
 将合成的三 (3,4-二甲氧基苯基) 膦 (TDMOPP) 用作 Rh 催化剂配体, 并用于 1-十二烯氢甲酰化反应, 考察了膦/铑比和反应温度对 Rh-TDMOPP 催化剂活性和选择性的影响. 结果表明, 在膦/铑比与反应温度较低时, Rh-TDMOPP 活性是 Rh-三苯基膦催化剂的 3 倍.  相似文献   

19.
 研究了水/有机两相体系中TPPTS(磺化三苯基膦)氧化为OTPPTS(氧化的TPPTS)对Rh/TPPTS催化烯烃氢甲酰化反应的影响. 结果表明,在己烯-1、辛烯-1和十二烯-1氢甲酰化反应中,当n(OTPPTS)/n(TPPTS)<1时,对催化剂体系性能的影响较小,但当n(OTPPTS)/n(TPPTS)>1时,将引起催化剂体系的活性、选择性和稳定性下降; 如果保持体系中TPPTS的含量一定,使n(TPPTS)/n(Rh)≥18,当n(OTPPTS)/n(Rh)=20时,则对催化剂体系性能的影响不明显. 这说明生成的OTPPTS不是铑催化剂的毒物. TPPTS氧化为OTPPTS致使铑催化剂的活性和生成醛的选择性下降, 是由于TPPTS浓度的降低导致n(TPPTS)/n(Rh)值过低,使催化循环中各活性物种的平衡发生变化及铑配合物的稳定性变差所造成的结果.  相似文献   

20.
碱溶液处理NaY分子筛形成的介孔有利于反应物及产物分子的扩散,调节碱溶液浓度可控制Y分子筛中的介孔结构,通过溶液离子交换法制备CuY催化剂,研究了NaY分子筛介孔结构调变对CuY催化剂催化甲醇氧化羰基化反应活性的影响。通过BET、~(29)Si-NMR、XRD、NH_3/CO-TPD、H_2-TPR和TEM等表征及催化活性分析表明,在碱溶液处理过程中,NaY分子筛骨架中的Si(0Al)和Si(1Al)原子被优先脱除,且笼结构坍塌使得临近超笼连接,逐步形成直径为3.47~3.66 nm,孔容介于0.142~0.226cm~3·g~(-1)的介孔,在提高反应物分子和产物分子扩散性能的同时,提高了活性物种的可接近性。随着碱液浓度的增加,CuY催化剂的催化活性先升高后降低。当碱液浓度为0.2 mol·L~(-1)时,NaY分子筛介孔直径为3.47 nm,孔容达到最大(0.226 cm~3·g~(-1)),相应CuY催化剂DMC的时空收率、选择性和甲醇转化率分别达到204.0 mg·g~(-1)·h~(-1)、67.8%和14.0%,活性最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号