首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
解的唯一性定理是用逆解法或半逆解法求解弹性力学问题的理论依据,在此用应力函数法、应力法、应力和函数法求解弹性力学平面问题,让学生切实、深入地理解解的唯一性定理的内在含义,丰富和扩大弹性力学的解题方法和应用范围。  相似文献   

2.
解的唯一性定理是用逆解法或半逆解法求解弹性力学问题的理论依据,在此用应力函数法、应力法、应力和函数法求解弹性力学平面问题,让学生切实、深入地理解解的唯一性定理的内在含义,丰富和扩大弹性力学的解题方法和应用范围。  相似文献   

3.
<正> 1.引言用应力函数求解弹性力学平面问题,关键在于如何选取应力函数,常用逆解法或半逆解法选取应力函数,有时进行量纲分析和应力函数在边界上的力学意义确定应力函数,或以泛复函为工具,引入双调和  相似文献   

4.
用应力解法求解弹性平面问题关键而困难的问题在于确定应力函数.一般弹性力学教科书主要采用半反逆解法介绍各种经典问题或简单问题的解答,但是对于怎样寻找应力函数都没有给出一个大致可循的方 ...  相似文献   

5.
弹性力学平面问题的应力函数的选择   总被引:1,自引:0,他引:1  
弹性力学平面问题的应力解法,归之为求解满足边界条件的双调和方程.要从纯数学上来求出双调和方程的通解是很困难的,也是不必要的.所以弹性力学中不得不采用逆解法和半逆解法,来试凑出一个满足边界条件和双调和方程的解.但是,要从众多的函数中,选择一个既满足边界条件,又满足双调和方程的应力函数,谈何容易,这常使一些初学者感到束手无策.如果我们从边界上的已知应力分布规律出发,就很容易找到所需的应力函数了.例如,在直角坐标解法中,双调和方程为...  相似文献   

6.
弹性力学平面问题的应力解法,归之为求解满足边界条件的双调和方程.要从纯数学上来求出双调和方程的通解是很困难的,也是不必要的.所以弹性力学中不得不采用逆解法和半逆解法,来试凑出一个满足边界条件和双调和方程的解.但是,要从众多的函数中,选择一个既满足边界条件,又满足双调和方程的应力函数,谈何容易,这常使一些初学者感到束手无策.如果我们从边界上的已知应力分布规律出发,就很容易找到所需的应力函数了.例如,在直角坐标解法中,双调和方程为  相似文献   

7.
用应力函数研究弹性力学平面问题,一般涉及常体力或不计体力的问题,通常采用逆解法或半逆解法。根据应力函数φ及其导数在边界上的力学意义的求解方法,实质上也属于半逆解法。本文主要讨论把应力函数法推广应用于体力有势函数,以扩大求解范围。与文献[1][2]的作者,共商文中存在的问题。  相似文献   

8.
 在归纳弹性力学平面问题各种选择应力函数方法的基础上,对于 狭长矩形截面梁,提出了一种新的确定应力函数的方法. 该方法简单、 实用,克服了选择应力函数的盲目性.在弹性力学教学中有一定参考价值.  相似文献   

9.
求解弹性力学平面问题时,常常引用应力函数解法.但在一般弹性力学教材中,对如何寻求应力函数论述不多.文献[1]、[2]采用了用边界上应力函数φ及其导数的力学意义来确定应力函数.这是一种行之有效的方法,它适用范围较大,力学意义明确,可为寻求应力函数指明方向.但[1]、[2]中有关公式只适于无体力的情况,这无疑地使其应用受到一定限制.本...  相似文献   

10.
拉伸时中心开裂有限板条裂纹端应力强度因子的计算方法   总被引:1,自引:0,他引:1  
以Muskhelishvili关于平面弹性力学解析函数解法和Hilbert边值问题解法为基础,文中通过解析函数(?)(z)和ω(z),给出一种位移-合力-应力模式.这种模式适用  相似文献   

11.
本文对座标系三维弹性力学问题采用周向与径向解析,轴向离散的半解析数值方法。通过引入部分解析函数,将三维问题归结为一维离散化方程。这种方法能适应于一大类复杂的弹性力学问题,方法简单,计算工作量少。本文用这方法来分析厚壳的三维变形与应力规律,研究大厚跨比的强厚壳的三维弹性理论解,为建立可靠的强厚壳理论提供依据。  相似文献   

12.
In the present paper,the compatibility equation for the plane stress problems of power-law materials is transformed into a biharmonic equation by introducing the so-calledcomplex pseudo-stress function,which makes it possible to solve the elastic-plastic planestress problems of strain hardening materials described by power-law using the complexvariable function method like that in the linear elasticity theory.By using this generalmethod,the close-formed analytical solutions for the stress,strain and displacementcomponents of the plane stress problems’of power-law materials is deduced in the paper,which can also be used to solve the elasto-plastic plane stress problems of strain-hardeningmaterials other than that described by power-law.As an example,the problem of a power-law material infinite plate containing a circular hole under uniaxial tension is solved byusing this method,the results of which are compared with those of a known asymptoticanalytical solution obtained by the perturbation method.  相似文献   

13.
Two displacement formulation methods are presented for problems of planar anisotropic elasticity. The first displacement method is based on solving the two governing partial differential equations simultaneously/ This method is a recapitulation of the orignal work of Eshelby, Read and Shockley [7] on generalized plane deformations of anisotropic elastic materials in the context of planar anisotropic elasticity.The second displacement method is based on solving the two governing equations separately. This formulation introduces a displacement function, which satisfies a fourth-order partial differential equation that is identical in the form to the one given by Lekhnitskii [6] for monoclinic materials using a stress function. Moreover, this method parallels the traditional Airy stress function method and thus the Lekhnitskii method for pure plane problems. Both the new approach and the Airy stress function method start with the equilibrium equations and use the same extended version of Green's theorem (Chou and Pagano [13], p. 114; Gao [11]) to derive the expressions for stress or displacement components in terms of a potential (stress or displacement) function (see also Gao [10, 11]). It is therefore anticipated that the displacement function involved in this new method could also be evaluated from measured data, as was done by Lin and Rowlands [17] to determine the Airy stress function experimentally.The two different displacement methods lead to two general solutions for problems of planar anisotropic elasticity. Although the two solutions differ in expressions, both of the depend on the complex roots of the same characteristic equation. Furthermore, this characteristic equation is identical to that obtained by Lekhnitskii [6] using a stress formulation. It is therefore concluded that the two displacement methods and Lekhnitskii's stress method are all equivalent for problems of planar anisotropic elasticity (see Gao and Rowlands [8] for detailed discussions).  相似文献   

14.
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated.The analysis is based on the exact elasticity equations for the plane stress problem.The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate.The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the bound- ary conditions by a skilful deduction.The analytical solution is compared with FEM calculation,indicating a good agreement.  相似文献   

15.
For the treatment of plane elasticity problems the use of complex functions has turned out to be an elegant and effective method. The complex formulation of stresses and displacements resulted from the introduction of a real stress function which has to satisfy the 2-dimensional biharmonic equation. It can be expressed therefore with the aid of complex functions. In this paper the fundamental idea of characterizing the elasticity problem in the case of zero body forces by a biharmonic stress function represented by complex valued functions is extended to 3-dimensional problems. The complex formulas are derived in such a way that the Muskhelishvili formulation for plane strain is included as a special case. As in the plane case, arbitrary complex valued functions can be used to ensure the satisfaction of the governing equations. Within the solution of an analytical example some advantages of the presented method are illustrated.  相似文献   

16.
板弯曲求解新体系及其应用   总被引:38,自引:3,他引:38  
钟万勰  姚伟岸 《力学学报》1999,31(2):173-184
建立平面弹性与板弯曲的相似性理论,给出了板弯曲经典理论的另一套基本方程与求解方法,然后进入哈密顿体系用直接法研究板弯曲问题.新方法论应用分离变量、本征函数展开方法给出了条形板问题的分析解,突破了传统半逆解法的限制.结果表明新方法论有广阔的应用前景.  相似文献   

17.
18.
自由端受集中力作用下压电悬臂梁弯曲问题解析解   总被引:5,自引:0,他引:5  
杨德庆  刘正兴 《力学季刊》2003,24(3):327-333
本文对由横观各向同性压电介质构成的悬臂梁,在自由端受集中力作用下的弯曲问题进行了研究。首先根据问题的特点,得到简化的线弹性压电悬臂梁的基本方程。然后根据正交各向异性材料悬臂梁应力分布特点,采用逆解法,建立了该问题的应力函数与电势分布函数,进而得到精确多项式解析解。该解析解形式简单,便于应用。文中对自由端受集中力的常规材料和压电材料悬臂梁的挠度也进行了比较。  相似文献   

19.
对弹性平面扇形域问题,将径向坐标模拟成时间坐标,通过适当的变换,将扇形域问题导向哈密尔顿体系,利用分离变量法及本征函数向量展开等方法,推导出裂纹尖端的应力奇性解的计算公式,结合变分原理,提出一种解决应力奇性计算的断裂分析元,将此分析元与有限元法相结合,可以进行某些断裂力学或复合材料等应力奇性问题的计算及分析,数值计算结果表明,该方法具有精度高,使用十分方便,灵活等优点,是哈密尔顿体系和辛数学优越性的一次具体体现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号