首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For the treatment of plane elasticity problems the use of complex functions has turned out to be an elegant and effective method. The complex formulation of stresses and displacements resulted from the introduction of a real stress function which has to satisfy the 2-dimensional biharmonic equation. It can be expressed therefore with the aid of complex functions. In this paper the fundamental idea of characterizing the elasticity problem in the case of zero body forces by a biharmonic stress function represented by complex valued functions is extended to 3-dimensional problems. The complex formulas are derived in such a way that the Muskhelishvili formulation for plane strain is included as a special case. As in the plane case, arbitrary complex valued functions can be used to ensure the satisfaction of the governing equations. Within the solution of an analytical example some advantages of the presented method are illustrated.  相似文献   

2.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

3.
通过引入Airy应力函数,平面问题可以归结为在给定的边界条件下求解一个双调和方程.因此对双调和函数性质的研究将有利于平面问题的求解.首先给出一个有关双调和函数的引理,并分别从复变和微分两种角度提供该引理的证明.借助这个引理,提出了一种构造极坐标中Airy应力函数的观察法.最后,举例说明了该观察法在几个经典平面问题中的应用.这些例子说明,利用本的观察法可以将某些平面问题应力函数构造的过程简单化。  相似文献   

4.
圆柱型各向异性弹性力学平面问题   总被引:1,自引:1,他引:1  
本文对圆柱型各向异性弹性力学平面问题的基本方程进行了改写。在此基础上,导出了应力函数G和位移函数φ,它们满足相同的控制方程,比文〔1〕的应力函数F的控制方程要简单,便于求得特解,并有F=rG的关系。还对若干经典问题进行了求解。  相似文献   

5.
Two displacement formulation methods are presented for problems of planar anisotropic elasticity. The first displacement method is based on solving the two governing partial differential equations simultaneously/ This method is a recapitulation of the orignal work of Eshelby, Read and Shockley [7] on generalized plane deformations of anisotropic elastic materials in the context of planar anisotropic elasticity.The second displacement method is based on solving the two governing equations separately. This formulation introduces a displacement function, which satisfies a fourth-order partial differential equation that is identical in the form to the one given by Lekhnitskii [6] for monoclinic materials using a stress function. Moreover, this method parallels the traditional Airy stress function method and thus the Lekhnitskii method for pure plane problems. Both the new approach and the Airy stress function method start with the equilibrium equations and use the same extended version of Green's theorem (Chou and Pagano [13], p. 114; Gao [11]) to derive the expressions for stress or displacement components in terms of a potential (stress or displacement) function (see also Gao [10, 11]). It is therefore anticipated that the displacement function involved in this new method could also be evaluated from measured data, as was done by Lin and Rowlands [17] to determine the Airy stress function experimentally.The two different displacement methods lead to two general solutions for problems of planar anisotropic elasticity. Although the two solutions differ in expressions, both of the depend on the complex roots of the same characteristic equation. Furthermore, this characteristic equation is identical to that obtained by Lekhnitskii [6] using a stress formulation. It is therefore concluded that the two displacement methods and Lekhnitskii's stress method are all equivalent for problems of planar anisotropic elasticity (see Gao and Rowlands [8] for detailed discussions).  相似文献   

6.
Symmetric laminated plates used usually are anisotropic plates. Based on the fundamental equation for anisotropic rectangular plates in plane stress problem, a general analytical solution is established accurately by method of stress function. Therefore the general formula of stress and displacement in plane is given. The integral constants in general formula can be determined by boundary conditions. This general solution is composed of solutions made by trigonometric function and hyperbolic function, which can satisfy the problem of arbitrary boundary conditions along four edges, and the algebraic polynomial solutions which can satisfy the problem of boundary conditions at four corners. Consequently this general solution can be used to solve the plane stress problem with arbitrary boundary conditions. For example, a symmetric laminated square plate acted with uniform normal load, tangential load and nonuniform normal load on four edges is calculated and analyzed.  相似文献   

7.
本文采用Williams特征展开方法结合Lee伪应力函数方法得到了平面应变状态下不可压缩幂硬化蠕变材料中刚性片状夹杂物的奇异场和局部解.研究发现,夹杂物尖端的应力奇性为r~(-m/2),与幂硬化指数m有关;而应变奇性为r~(-1/2),与幂硬化指数无关.本文通过选择积分路径给出了近尖的局部解,并用显函数的形式给出了近尖应力和位移的角变化.  相似文献   

8.
各向异性介质中SH波引起的裂纹扩展   总被引:1,自引:2,他引:1  
刘殿魁 《爆炸与冲击》1990,10(2):97-106
本文利用Green函数法,求解各向异性介质中半无限长裂纹在SH波作用下,以任意速度扩展的问题。首先,利用Laplace变换和Cagniard-de Hoop反演法求解各向异性介质中反平面问题的Green函数,并利用它建立了求解裂纹扩展问题的积分方程。因为方程为Abel型的,所以可得到在SH波作用下,半无限长裂纹扩展问题的解析解。还可求得裂纹端点附近的应力和裂纹表面上位移的表达式。并对裂纹端点附近的奇异性进行讨论。最后讨论了裂纹尖端附近任一点的能量关系。并应用Griffith的能量准则,对裂纹扩展规律进行了讨论。  相似文献   

9.
The method is very efficient by applying extended Schwarz principle integrated with the analysis of the singularity of complex stress functions to solve some plane-elastic problems under concentrated loads, in Ref.[1], this method is used to deal with the elastic problems of homogeneous plane. In this paper, it is extended to the case of dissimilar materials with co-circular cracks under concentrated force and moment. For several typical cases the solutions of complex stress function in closed form are built up and the stress intensity factors are given. From these solutions, we provide a series of particular results, in which two of them coincide with those in Refs. [1] and [6].  相似文献   

10.
幂硬化介质中平面应力动态裂纹的尖端弹塑性场   总被引:1,自引:0,他引:1  
本文采用塑性动力学方程,对幂硬化介质中平面应力动态裂纹尖端场进行了渐近分析,其结果表明:在裂纹尖端附近,应力具有的奇异性,应变具有的奇异性,其中A是一个与塑性区尺寸有关的常数因子,r是离开裂纹尖端的距离,n为硬化指数,文中给出了尖端场的控制参量D,它依赖于马赫数;并且给出了各物理量的角函数。  相似文献   

11.
For the first time, Hamiltonian system used in dynamics is introduced to formulate statics and Hamdtonian equation is derived corresponding to the original governing equation, which enables separation of variables to work and eigen function to be obtained for the boundary problem. Consequently, analytical and semi-analytical solutions can be got. The method is especially suitable to solve rectangular plane problem and spatial prism in elastic mechanics. The paper presents a new idea to solve partially differential equation in solid mechanics. The flexural problem and phane stress problem of laminated plate are studied in detail.  相似文献   

12.
For the first time, Hamiltonian system used in dynamics is introduced to formulate statics and Hamiltonian equation is derived corresponding to the original governing equation, which enables separation of variables to work and eigen function to be obtained for the boundary problem. Consequently, analytical and semi-analytical solutions can be got. The method is especially suitable to solve rectangular plane problem and spatial prism in elastic mechanics. The paper presents a new idea to solve partially differential equation in solid mechanics. The flexural problem and plane stress problem of laminated plate are studied in detail. This project is supported by National Natural Science Foundation of China for Post-Doctorate Research.  相似文献   

13.
在航空航天、船舶、石油管道和核电等领域,服役结构或部件在长期极端条件下运行,不可避免地会产生裂纹,因此,为研究含裂纹结构的准静态断裂行为,必须了解裂纹尖端附近区域的应力应变场特点.对于幂律材料裂纹构元,研究平面应变和平面应力条件下Ⅰ型裂纹尖端应力场的解析分布.基于能量密度等效和量纲分析,推导了能量密度中值点代表性体积单元(representative volume element, RVE)的等效应力解析方程,并定义其为应力因子,进而针对有限平面应变和平面应力紧凑拉伸(compact tension, CT)试样和单边裂纹弯曲(single edge bend, SEB)试样,以应力因子作为应力特征量,并构造用于表征裂尖等效应力等值线的蝶翅轮廓式和扇贝轮廓式三角特殊函数,提出描述幂律塑性条件下平面I型裂纹尖端应力场的半解析模型.该半解析模型形式简单,对CT和SEB试样的裂尖应力场的预测结果与有限元分析的结果比较表明,两者之间均密切吻合,模型公式可直接用于预测Ⅰ型裂纹尖端应力分布,方便于断裂安全评价和理论发展.  相似文献   

14.
各向异性平面含斜裂纹的奇异积分方程方法   总被引:1,自引:0,他引:1  
张建勇  李星 《力学季刊》2004,25(2):248-255
本文应用平面弹性复变方法,将无限各向异性平面中的任意斜裂纹问题归结为求解一组解析函数边值问题,通过构造适当的积分变换将边值问题转化为奇异积分方程,进而应用Lobotto-Chebyshev数值求积公式,求出该奇异积分方程的数值解,并得到了应力强度因子的近似表达式,最后,给出了一些实例的数值结果,对特例的数值结果与精确结果进行比较,吻合的很好。  相似文献   

15.
The complex function method is used to solve problems of scattering of plane SH-waves on cylindrical canyon topography of arbitrary shape in anisotropic media. This paper gives the complete function series and general expressions with boundary condition to approach the solution of steady state scattering of plane SH-waves on two-dimensional canyon topography in anisotropic media. The problem to be solved can be reduced to a solution of infinite algebraic equation series by using Hermite function and it's orthogonal conditions. The solution can be obtained directly by using computers. Finally, as an example, computational results of scattering of plane SH-waves on a semi-cylindrical canyon topography are presented. The projects sponsored by The Joint Seismological Science Foundation.  相似文献   

16.
IntroductionUptonow,therehavebenmanyresearchesontheplaneweldingproblemofisotropicmaterials.e.g.[1]and[2]etc.However,forthepla...  相似文献   

17.
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam.  相似文献   

18.
利用应力函数半逆解法,研究了均布载荷作用下、材料属性在厚度上任意变化的功能梯度简支梁弯曲的解析解,给出了各向应力应变与位移的解析显式表达式.首先根据平面应力状态的基本方程,得出了功能梯度梁的应力函数应满足的偏微分方程,并根据应力边界条件得出了各应力分布的表达式;进而根据功能梯度材料的本构方程和位移边界条件,得出了应变和位移的分布.最后,通过将本文的解退化到均质各向同性梁并与经典弹性解比较,证明了本文理论的正确性,并求解了材料组分呈幂律分布的功能梯度梁的应力和位移分布,分析了上下表层材料的弹性模量比λ与组分材料体积分数指数n对应力和位移分布的影响.  相似文献   

19.
Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, KⅠ and KⅡ, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.  相似文献   

20.
Creep and stress relaxation are known to be interrelated in linearly viscoelastic materials by an exact analytical expression. In this article, analytical interrelations are derived for nonlinearly viscoelastic materials which obey a single integral nonlinear superposition constitutive equation. The kernel is not assumed to be separable as a product of strain and time dependent parts. Superposition is fully taken into account within the single integral formulation used. Specific formulations based on power law time dependence and truncated expansions are developed. These are appropriate for weak stress and strain dependence. The interrelated constitutive formulation is applied to ligaments, in which stiffness increases with strain, stress relaxation proceeds faster than creep, and rate of creep is a function of stress and rate of relaxation is a function of strain. An interrelation was also constructed for a commercial die-cast aluminum alloy currently used in small engine applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号